cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-75 of 75 results.

A347056 Triangle read by rows: T(n,k) = (n+1)*(n+2)*(k+3)*binomial(n,k)/6, 0 <= k <= n.

Original entry on oeis.org

1, 3, 4, 6, 16, 10, 10, 40, 50, 20, 15, 80, 150, 120, 35, 21, 140, 350, 420, 245, 56, 28, 224, 700, 1120, 980, 448, 84, 36, 336, 1260, 2520, 2940, 2016, 756, 120, 45, 480, 2100, 5040, 7350, 6720, 3780, 1200, 165, 55, 660, 3300, 9240, 16170, 18480, 13860, 6600, 1815, 220
Offset: 0

Views

Author

Luc Rousseau, Aug 14 2021

Keywords

Comments

This triangle is T[3] in the sequence (T[p]) of triangles defined by: T[p](n,k) = (k+p)*(n+p-1)!/(k!*(n-k)!*p!) and T[0](0,0)=1.
Riordan triangle (1/(1-x)^3, x/(1-x)) with column k scaled with A000292(k+1) = binomial(k+3, 3), for k >= 0. - Wolfdieter Lang, Sep 30 2021

Examples

			T(6,2) = (6+1)*(6+2)*(2+3)*binomial(6,2)/6 = 7*8*5*15/6 = 700.
The triangle T begins:
n \ k  0   1    2     3     4     5     6     7     8    9  10 ...
0:     1
1:     3   4
2:     6  16   10
3:    10  40   50    20
4:    15  80  150   120    35
5:    21 140  350   420   245    56
6:    28 224  700  1120   980   448    84
7:    36 336 1260  2520  2940  2016   756   120
8:    45 480 2100  5040  7350  6720  3780  1200   165
9:    55 660 3300  9240 16170 18480 13860  6600  1815  220
10:   66 880 4950 15840 32340 44352 41580 26400 10890 2640 286
... - _Wolfdieter Lang_, Sep 30 2021
		

Crossrefs

Cf. A097805 (p=0), A103406 (p=1), A124932 (essentially p=2).
From Wolfdieter Lang, Sep 30 2021: (Start)
Columns (with leading zeros): A000217(n+1), 4*A000294, 10*A000332(n+2), 20*A000389(n+2), 35*A000579(n+2), 56*A000580(n+2), 84*A000581(n+2), 120*A000582(n+2), ...
Diagonals: A000292(k+1), A004320(k+1), 2*A006411(k+1), 10*A040977, ... (End)

Programs

  • PARI
    T(p,n,k)=if(n==0&&p==0,1,((k+p)*(n+p-1)!)/(k!*(n-k)!*p!))
    for(n=0,9,for(k=0,n,print1(T(3,n,k),", ")))

Formula

T(n,k) = (n+1)*(n+2)*(k+3)*binomial(n,k)/6.
G.f. column k: x^k*binomial(k+3, 3)/(1 - x)^(k+3), for k >= 0. - Wolfdieter Lang, Sep 30 2021

A059251 A sequence related to numeric partitions and Fermat Coefficients.

Original entry on oeis.org

1, 1, 5, 15, 44, 99, 217, 429, 811, 1430, 2438, 3978, 6312, 9690, 14550, 21318, 30669, 43263, 60115, 82225, 111044, 148005, 195143, 254475, 328759, 420732, 534076, 672452, 840656, 1043460, 1287036, 1577532, 1922745, 2330445, 2810385, 3372291
Offset: 1

Views

Author

Alford Arnold, Jan 22 2001

Keywords

Comments

The sequences m1^8, m2^4 and 6*m4^2 correspond to eight elements of a finite group of order eight belonging to the appropriate partition class.

Examples

			a(5)= 44 because (1/8)*( 330 + 10 + 12) = 352/8; a(9)= 811 because (1/8)*(6435 + 35 + 18) = 6488/8.
		

Crossrefs

Formula

Let m1^8 = A000580, m2^4 = 1 0 4 0 10 0 20 ... and let m4^2 = 1 0 0 0 2 0 0 0 3 0 0 0 4 ... Then a(n) = (1/8)*(m1^8 + m2^4 + 6*m4^2).
Empirical g.f.: x*(1 - 3*x + 5*x^2 + 3*x^3 - 4*x^4 + 3*x^5 + 5*x^6 - 3*x^7 + x^8) / ((1 - x)^8*(1 + x)^4*(1 + x^2)^2). - Colin Barker, Mar 30 2017

Extensions

More terms from David Wasserman, Jun 07 2002

A095670 Eighth column (m=7) of (1,4)-Pascal triangle A095666.

Original entry on oeis.org

4, 29, 120, 372, 960, 2178, 4488, 8580, 15444, 26455, 43472, 68952, 106080, 158916, 232560, 333336, 468996, 648945, 884488, 1189100, 1578720, 2072070, 2691000, 3460860, 4410900, 5574699, 6990624, 8702320, 10759232, 13217160, 16138848
Offset: 0

Views

Author

Wolfdieter Lang, Jun 11 2004

Keywords

Comments

If Y is a 4-subset of an n-set X then, for n>=10, a(n-10) is the number of 7-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007

Formula

G.f.: (4-3*x)/(1-x)^8.
a(n) = 4*b(n)-3*b(n-1) =(n+28)*binomial(n+6, 6)/7, with b(n):=binomial(n+7, 7)= A000580(n+7, 7).

A127157 Triangle read by rows: T(n,k) is the number of ordered trees with n edges and 2k nodes of odd degree (not outdegree; 1 <= k <= ceiling(n/2)).

Original entry on oeis.org

1, 2, 3, 2, 4, 10, 5, 30, 7, 6, 70, 56, 7, 140, 252, 30, 8, 252, 840, 330, 9, 420, 2310, 1980, 143, 10, 660, 5544, 8580, 2002, 11, 990, 12012, 30030, 15015, 728, 12, 1430, 24024, 90090, 80080, 12376, 13, 2002, 45045, 240240, 340340, 111384, 3876, 14, 2730
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2007

Keywords

Comments

Row n has ceiling(n/2) terms.
Row sums are the Catalan numbers (A000108).
T(n,1) = n;
T(n,2) = 2*binomial(n+1, 4) = 2*A000332(n+1);
T(n,3) = 7*binomial(n+2, 7) = 7*A000580(n+2);
T(n,4) = 30*binomial(n+3, 10) = 30*A001287(n+3);
T(n,5) = 143*binomial(n+4, 13) = 143*A010966(n+4);
T(2n-1,n) = A006013(n-1).
T(n,k) is the number of ordered trees (A000108) with n edges, exactly k of whose vertices possess at least one leaf child. [David Callan, Aug 22 2014]

Examples

			Triangle starts:
  1;
  2;
  3,  2;
  4, 10;
  5, 30,  7;
  6, 70, 56;
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->2*binomial(3*k-1,2*k)*binomial(n-1+k,3*k-2)/(3*k-1): for n from 1 to 15 do seq(T(n,k),k=1..ceil(n/2)) od;
  • Mathematica
    m = 14(*rows*); G = 0; Do[G = Series[(1 + t^2 z - G^3 z^2 + G^2 z (2+z))/ (1+2z), {t, 0, m}, {z, 0, m}] // Normal // Expand, m]; Rest[ CoefficientList[#, t^2]]& /@ Rest[CoefficientList[G-1, z] ] // Flatten (* Jean-François Alcover, Jan 23 2019 *)

Formula

T(n,k) = 2*binomial(3k-1,2k)*binomial(n-1+k,3k-2)/(3k-1) (formula obtained only by inspection).
G.f.: G-1, where G=G(t,z) satisfies z^2*G^3 - z(z+2)G^2 + (1+2z)*G - t^2*z - 1 = 0.

A356037 Conjecturally, a(n) is the smallest number m such that every natural number is a sum of at most m n-simplex numbers.

Original entry on oeis.org

1, 3, 5, 8, 10, 13, 15, 15, 19, 24
Offset: 1

Views

Author

Mohammed Yaseen, Jul 24 2022

Keywords

Comments

n-simplex numbers are {binomial(k,n); k>=n}.
This problem is the simplex number analog of Waring's problem.
a(2) = 3 was proposed by Fermat and proved by Gauss, see A061336.
Pollock conjectures that a(3) = 5. Salzer and Levine prove this for numbers up to 452479659. See A104246 and A000797.
Kim gives a(4)=8, a(5)=10, a(6)=13 and a(7)=15 (not proved).

Examples

			2-simplex numbers are {binomial(k,2); k>=2} = {1,3,6,10,...}, the triangular numbers. 3 is the smallest number m such that every natural number is a sum of at most m triangular numbers. So a(2)=3.
3-simplex numbers are {binomial(k,3); k>=3} = {1,4,10,20,...}, the tetrahedral numbers. 5 is presumed to be the smallest number m such that every natural number is a sum of at most m tetrahedral numbers. So a(3)=5.
		

Crossrefs

Minimal number of x-simplex numbers whose sum equals n: A061336 (x=2), A104246 (x=3), A283365 (x=4), A283370 (x=5).
x-simplex numbers: A000217 (x=2), A000292 (x=3), A000332 (x=4), A000389 (x=5), A000579 (x=6), A000580 (x=7), A000581 (x=8), A000582 (x=9).
Previous Showing 71-75 of 75 results.