cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 131 results. Next

A368596 Number of n-element sets of singletons or pairs of distinct elements of {1..n}, or loop graphs with n edges, such that it is not possible to choose a different element from each.

Original entry on oeis.org

0, 0, 0, 3, 66, 1380, 31460, 800625, 22758918, 718821852, 25057509036, 957657379437, 39878893266795, 1799220308202603, 87502582432459584, 4566246347310609247, 254625879822078742956, 15115640124974801925030, 952050565540607423524658, 63425827673509972464868323
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(3) = 3 set-systems:
  {{1},{2},{1,2}}
  {{1},{3},{1,3}}
  {{2},{3},{2,3}}
		

Crossrefs

The version without the choice condition is A014068, covering A368597.
The complement appears to be A333331.
For covering pairs we have A367868.
Allowing edges of any positive size gives A368600, any length A367903.
The covering case is A368730.
The unlabeled version is A368835.
A000085 counts set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
A322661 counts covering half-loop-graphs, connected A062740.
A369141 counts non-choosable loop-graphs, covering A369142.
A369146 counts unlabeled non-choosable loop-graphs, covering A369147.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 10 2024

A193674 Number of nonisomorphic systems enumerated by A102896; that is, the number of inequivalent closure operators (or Moore families).

Original entry on oeis.org

1, 2, 5, 19, 184, 14664, 108295846, 2796163199765896
Offset: 0

Views

Author

Don Knuth, Jul 01 2005

Keywords

Comments

Also the number of unlabeled n-vertex set-systems (A003180) closed under union. - Gus Wiseman, Aug 01 2019

Examples

			From _Gus Wiseman_, Aug 01 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 19 set-systems closed under union:
  {}  {}     {}               {}
      {{1}}  {{1}}            {{1}}
             {{1,2}}          {{1,2}}
             {{2},{1,2}}      {{1,2,3}}
             {{1},{2},{1,2}}  {{2},{1,2}}
                              {{3},{1,2,3}}
                              {{1},{2},{1,2}}
                              {{2,3},{1,2,3}}
                              {{1},{2,3},{1,2,3}}
                              {{3},{2,3},{1,2,3}}
                              {{1,3},{2,3},{1,2,3}}
                              {{2},{3},{2,3},{1,2,3}}
                              {{2},{1,3},{2,3},{1,2,3}}
                              {{3},{1,3},{2,3},{1,2,3}}
                              {{1,2},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,3},{2,3},{1,2,3}}
                              {{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.1.1

Crossrefs

The labeled case is A102896.
The covering case is A108798.
The same for intersection instead of union is A108800.
The case with empty edges allowed is A193675.

Formula

a(n) = A193675(n)/2.

Extensions

a(6) received Aug 17 2005
a(6) corrected by Pierre Colomb, Aug 02 2011
a(7) from Gunnar Brinkmann, Feb 07 2018

A367769 Number of finite sets of nonempty non-singleton subsets of {1..n} contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 0, 1, 1490, 67027582, 144115188036455750, 1329227995784915872903806998967001298, 226156424291633194186662080095093570025917938800079226639565284090686126876
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
Includes all set-systems with more edges than covered vertices, but this condition is not sufficient.

Examples

			The a(3) = 1 set-system is: {{1,2},{1,3},{2,3},{1,2,3}}.
		

Crossrefs

Set-systems without singletons are counted by A016031, covering A323816.
The complement is A367770, with singletons allowed A367902 (ranks A367906).
The version for simple graphs is A367867, covering A367868.
The version allowing singletons and empty edges is A367901.
The version allowing singletons is A367903, ranks A367907.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Subsets[Range[n]], Length[#]>1&]], Select[Tuples[#], UnsameQ@@#&]=={}&]], {n,0,3}]

Formula

a(n) = 2^(2^n-n-1) - A367770(n) = A016031(n+1) - A367770(n). - Christian Sievers, Jul 28 2024

Extensions

a(6)-a(8) from Christian Sievers, Jul 28 2024

A370637 Number of subsets of {1..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 25, 67, 134, 309, 709, 1579, 3420, 7240, 15077, 30997, 61994, 125364, 253712, 512411, 1032453, 2075737, 4166469, 8352851, 16731873, 33497422, 67038086, 134130344, 268328977, 536741608, 1073586022, 2147296425, 4294592850, 8589346462, 17179033384
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(5) = 8 subsets:
  .  .  .  {1,2,3}  {1,2,3}    {1,2,3}
                    {1,2,3,4}  {1,4,5}
                               {1,2,3,4}
                               {1,2,3,5}
                               {1,2,4,5}
                               {1,3,4,5}
                               {2,3,4,5}
                               {1,2,3,4,5}
		

Crossrefs

Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Simple graphs of this type are counted by A367867, covering A367868.
Set systems not of this type are counted by A367902, ranks A367906.
Set systems of this type are counted by A367903, ranks A367907.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A version for MM-numbers of multisets is A355529, complement A368100.
Factorizations are counted by A368413/A370813, complement A368414/A370814.
The complement for prime indices is A370582, differences A370586.
For prime indices we have A370583, differences A370587.
First differences are A370589.
The complement is counted by A370636, differences A370639.
The case without ones is A370643.
The version for a unique choice is A370638, maxima A370640, diffs A370641.
The minimal case is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Formula

a(2^n - 1) = A367903(n).
Partial sums of A370589.

Extensions

a(21)-a(34) from Alois P. Heinz, Mar 09 2024

A330060 MM-numbers of VDD-normalized multisets of multisets.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 35, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 63, 64, 70, 72, 74, 76, 78, 81, 84, 89, 90, 91, 95, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117, 120, 126, 128
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2019

Keywords

Comments

First differs from A330104 and A330120 in having 35 and lacking 69, with corresponding multisets of multisets 35: {{2},{1,1}} and 69: {{1},{2,2}}.
First differs from A330108 in having 207 and lacking 175, with corresponding multisets of multisets 207: {{1},{1},{2,2}} and 175: {{2},{2},{1,1}}.
We define the VDD (vertex-degrees decreasing) normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all VDD-normalized multisets of multisets together with their MM-numbers begins:
   1: 0           21: {1}{11}        49: {11}{11}         84: {}{}{1}{11}
   2: {}          24: {}{}{}{1}      52: {}{}{12}         89: {1112}
   3: {1}         26: {}{12}         53: {1111}           90: {}{1}{1}{2}
   4: {}{}        27: {1}{1}{1}      54: {}{1}{1}{1}      91: {11}{12}
   6: {}{1}       28: {}{}{11}       56: {}{}{}{11}       95: {2}{111}
   7: {11}        30: {}{1}{2}       57: {1}{111}         96: {}{}{}{}{}{1}
   8: {}{}{}      32: {}{}{}{}{}     60: {}{}{1}{2}       98: {}{11}{11}
   9: {1}{1}      35: {2}{11}        63: {1}{1}{11}      104: {}{}{}{12}
  12: {}{}{1}     36: {}{}{1}{1}     64: {}{}{}{}{}{}    105: {1}{2}{11}
  13: {12}        37: {112}          70: {}{2}{11}       106: {}{1111}
  14: {}{11}      38: {}{111}        72: {}{}{}{1}{1}    108: {}{}{1}{1}{1}
  15: {1}{2}      39: {1}{12}        74: {}{112}         111: {1}{112}
  16: {}{}{}{}    42: {}{1}{11}      76: {}{}{111}       112: {}{}{}{}{11}
  18: {}{1}{1}    45: {1}{1}{2}      78: {}{1}{12}       113: {123}
  19: {111}       48: {}{}{}{}{1}    81: {1}{1}{1}{1}    114: {}{1}{111}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330061.
A subset of A320456.
Non-isomorphic multiset partitions are A007716.
MM-weight is A302242.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Select[Range[100],Sort[primeMS/@primeMS[#]]==sysnorm[primeMS/@primeMS[#]]&]

A330097 MM-numbers of VDD-normalized multiset partitions.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 27, 35, 37, 39, 45, 49, 53, 57, 63, 81, 89, 91, 95, 105, 111, 113, 117, 131, 133, 135, 141, 147, 151, 159, 161, 165, 169, 171, 183, 189, 195, 207, 223, 225, 243, 245, 247, 259, 265, 267, 273, 281, 285, 311, 315, 329, 333, 339, 343
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2019

Keywords

Comments

First differs from A330122 in having 207 and lacking 175, with corresponding multiset partitions 207: {{1},{1},{2,2}} and 175: {{2},{2},{1,1}}.
A multiset partition is a finite multiset of finite nonempty multisets of positive integers.
We define the VDD (vertex-degrees decreasing) normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all VDD-normalized multiset partitions together with their MM-numbers begins:
   1: 0             57: {1}{111}        151: {1122}
   3: {1}           63: {1}{1}{11}      159: {1}{1111}
   7: {11}          81: {1}{1}{1}{1}    161: {11}{22}
   9: {1}{1}        89: {1112}          165: {1}{2}{3}
  13: {12}          91: {11}{12}        169: {12}{12}
  15: {1}{2}        95: {2}{111}        171: {1}{1}{111}
  19: {111}        105: {1}{2}{11}      183: {1}{122}
  21: {1}{11}      111: {1}{112}        189: {1}{1}{1}{11}
  27: {1}{1}{1}    113: {123}           195: {1}{2}{12}
  35: {2}{11}      117: {1}{1}{12}      207: {1}{1}{22}
  37: {112}        131: {11111}         223: {11112}
  39: {1}{12}      133: {11}{111}       225: {1}{1}{2}{2}
  45: {1}{1}{2}    135: {1}{1}{1}{2}    243: {1}{1}{1}{1}{1}
  49: {11}{11}     141: {1}{23}         245: {2}{11}{11}
  53: {1111}       147: {1}{11}{11}     247: {12}{111}
For example, 1155 is the MM-number of {{1},{2},{3},{1,1}}, which is VDD-normalized, so 1155 belongs to the sequence.
On the other hand, 69  is the MM-number of {{1},{2,2}}, but the VDD-normalization is {{2},{1,1}}, so 69 does not belong to the sequence.
		

Crossrefs

Equals the odd terms of A330060.
A subset of A320634.
Non-isomorphic multiset partitions are A007716.
MM-weight is A302242.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Select[Range[1,100,2],Sort[primeMS/@primeMS[#]]==sysnorm[primeMS/@primeMS[#]]&]

A330099 BII-numbers of brute-force normalized set-systems.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 15, 19, 20, 21, 23, 31, 33, 37, 51, 52, 53, 55, 63, 64, 65, 67, 68, 69, 71, 75, 79, 83, 84, 85, 87, 95, 97, 101, 115, 116, 117, 119, 127, 139, 143, 159, 191, 203, 207, 223, 255, 267, 271, 275, 276, 277, 279, 287, 307, 308, 309, 311, 319, 331
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

First differs from A330100 in having 545 and lacking 179, with corresponding set-systems 545: {{1},{2,3},{2,4}} and 179: {{1},{2},{4},{1,3},{2,3}}.
A set-system is a finite set of finite nonempty sets of positive integers.
We define the brute-force normalization of a set-system to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of sets is first by length and then lexicographically.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
There are A055621(n) entries m such that A326702(m) = n, where A326702(k) is the number of covered vertices in the set-system with BII-number k.
There are A283877(n) entries m such that A326031(m) = n, where A326031(k) is the weight of the set-system with BII-number k.

Examples

			The sequence of all nonempty brute-force normalized set-systems together with their BII-numbers begins:
   1: {1}                  52: {12}{13}{23}
   3: {1}{2}               53: {1}{12}{13}{23}
   4: {12}                 55: {1}{2}{12}{13}{23}
   5: {1}{12}              63: {1}{2}{3}{12}{13}{23}
   7: {1}{2}{12}           64: {123}
  11: {1}{2}{3}            65: {1}{123}
  15: {1}{2}{3}{12}        67: {1}{2}{123}
  19: {1}{2}{13}           68: {12}{123}
  20: {12}{13}             69: {1}{12}{123}
  21: {1}{12}{13}          71: {1}{2}{12}{123}
  23: {1}{2}{12}{13}       75: {1}{2}{3}{123}
  31: {1}{2}{3}{12}{13}    79: {1}{2}{3}{12}{123}
  33: {1}{23}              83: {1}{2}{13}{123}
  37: {1}{12}{23}          84: {12}{13}{123}
  51: {1}{2}{13}{23}       85: {1}{12}{13}{123}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330101.
Non-isomorphic multiset partitions are A007716.
Unlabeled spanning set-systems by span are A055621.
Unlabeled spanning set-systems by weight are A283877.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[0,100],Sort[bpe/@bpe[#]]==brute[bpe/@bpe[#]]&]

A330100 BII-numbers of VDD-normalized set-systems.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 15, 19, 20, 21, 23, 31, 33, 37, 51, 52, 53, 55, 63, 64, 65, 67, 68, 69, 71, 75, 79, 83, 84, 85, 87, 95, 97, 101, 115, 116, 117, 119, 127, 139, 143, 159, 179, 180, 181, 183, 191, 203, 207, 211, 212, 213, 215, 223, 225, 229, 243, 244, 245, 247
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2019

Keywords

Comments

First differs from A330099 in lacking 545 and having 179, with corresponding set-systems 545: {{1},{2,3},{2,4}} and 179: {{1},{2},{4},{1,3},{2,3}}.
A set-system is a finite set of finite nonempty sets of positive integers.
We define the VDD (vertex-degrees decreasing) normalization of a set-system to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering of sets is first by length and then lexicographically.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}

Examples

			The sequence of all nonempty VDD-normalized set-systems together with their BII-numbers begins:
   1: {1}                  52: {12}{13}{23}
   3: {1}{2}               53: {1}{12}{13}{23}
   4: {12}                 55: {1}{2}{12}{13}{23}
   5: {1}{12}              63: {1}{2}{3}{12}{13}{23}
   7: {1}{2}{12}           64: {123}
  11: {1}{2}{3}            65: {1}{123}
  15: {1}{2}{3}{12}        67: {1}{2}{123}
  19: {1}{2}{13}           68: {12}{123}
  20: {12}{13}             69: {1}{12}{123}
  21: {1}{12}{13}          71: {1}{2}{12}{123}
  23: {1}{2}{12}{13}       75: {1}{2}{3}{123}
  31: {1}{2}{3}{12}{13}    79: {1}{2}{3}{12}{123}
  33: {1}{23}              83: {1}{2}{13}{123}
  37: {1}{12}{23}          84: {12}{13}{123}
  51: {1}{2}{13}{23}       85: {1}{12}{13}{123}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330102.
A subset of A326754.
Non-isomorphic multiset partitions are A007716.
Unlabeled spanning set-systems counted by vertices are A055621.
Unlabeled set-systems counted by weight are A283877.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Select[Range[0,100],Sort[bpe/@bpe[#]]==sysnorm[bpe/@bpe[#]]&]

A330104 MM-numbers of brute-force normalized multisets of multisets.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 63, 64, 69, 72, 74, 76, 78, 81, 84, 89, 90, 91, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117, 120, 126, 128, 131, 133
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

First differs from A330060 and A330108 in having 69 and lacking 35, with corresponding multisets of multisets 69: {{1},{2,2}} and 35: {{2},{1,1}}.
First differs from A330120 in having 435 and lacking 429, with corresponding multisets of multisets 435: {{1},{2},{1,3}} and 429: {{1},{3},{1,2}}.
We define the brute-force normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all brute-force normalized multisets of multisets together with their MM-numbers begins:
   1: 0           21: {1}{11}        52: {}{}{12}         89: {1112}
   2: {}          24: {}{}{}{1}      53: {1111}           90: {}{1}{1}{2}
   3: {1}         26: {}{12}         54: {}{1}{1}{1}      91: {11}{12}
   4: {}{}        27: {1}{1}{1}      56: {}{}{}{11}       96: {}{}{}{}{}{1}
   6: {}{1}       28: {}{}{11}       57: {1}{111}         98: {}{11}{11}
   7: {11}        30: {}{1}{2}       60: {}{}{1}{2}      104: {}{}{}{12}
   8: {}{}{}      32: {}{}{}{}{}     63: {1}{1}{11}      105: {1}{2}{11}
   9: {1}{1}      36: {}{}{1}{1}     64: {}{}{}{}{}{}    106: {}{1111}
  12: {}{}{1}     37: {112}          69: {1}{22}         108: {}{}{1}{1}{1}
  13: {12}        38: {}{111}        72: {}{}{}{1}{1}    111: {1}{112}
  14: {}{11}      39: {1}{12}        74: {}{112}         112: {}{}{}{}{11}
  15: {1}{2}      42: {}{1}{11}      76: {}{}{111}       113: {123}
  16: {}{}{}{}    45: {1}{1}{2}      78: {}{1}{12}       114: {}{1}{111}
  18: {}{1}{1}    48: {}{}{}{}{1}    81: {1}{1}{1}{1}    117: {1}{1}{12}
  19: {111}       49: {11}{11}       84: {}{}{1}{11}     120: {}{}{}{1}{2}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330105.
Non-isomorphic multiset partitions are A007716.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[100],Sort[primeMS/@primeMS[#]]==brute[primeMS/@primeMS[#]]&]

A330107 MM-numbers of brute-force normalized multiset partitions.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 27, 37, 39, 45, 49, 53, 57, 63, 69, 81, 89, 91, 105, 111, 113, 117, 131, 133, 135, 141, 147, 151, 159, 161, 165, 169, 171, 183, 189, 195, 207, 223, 225, 243, 247, 259, 267, 273, 281, 285, 309, 311, 315, 329, 333, 339, 343, 351, 359
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers.
We define the brute-force normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all brute-force normalized multiset partitions together with their MM-numbers begins:
   1: 0             63: {1}{1}{11}      159: {1}{1111}
   3: {1}           69: {1}{22}         161: {11}{22}
   7: {11}          81: {1}{1}{1}{1}    165: {1}{2}{3}
   9: {1}{1}        89: {1112}          169: {12}{12}
  13: {12}          91: {11}{12}        171: {1}{1}{111}
  15: {1}{2}       105: {1}{2}{11}      183: {1}{122}
  19: {111}        111: {1}{112}        189: {1}{1}{1}{11}
  21: {1}{11}      113: {123}           195: {1}{2}{12}
  27: {1}{1}{1}    117: {1}{1}{12}      207: {1}{1}{22}
  37: {112}        131: {11111}         223: {11112}
  39: {1}{12}      133: {11}{111}       225: {1}{1}{2}{2}
  45: {1}{1}{2}    135: {1}{1}{1}{2}    243: {1}{1}{1}{1}{1}
  49: {11}{11}     141: {1}{23}         247: {12}{111}
  53: {1111}       147: {1}{11}{11}     259: {11}{112}
  57: {1}{111}     151: {1122}          267: {1}{1112}
		

Crossrefs

Equals the odd terms of A330104.
Non-isomorphic multiset partitions are A007716.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[1,100,2],Sort[primeMS/@primeMS[#]]==brute[primeMS/@primeMS[#]]&]
Previous Showing 31-40 of 131 results. Next