A005960
Number of acyclic disubstituted alkanes with n carbon atoms and distinct substituents.
Original entry on oeis.org
1, 3, 8, 23, 69, 208, 636, 1963, 6099, 19059, 59836, 188576, 596252, 1890548, 6008908, 19139155, 61074583, 195217253, 624913284, 2003090071, 6428430129, 20653101216, 66420162952, 213802390264, 688796847976, 2220789746752, 7165331870036
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
terms = 27; (* B = g.f. for A000625 *) B[] = 0; Do[B[x] = 1 + x*((B[x]^3 + 2*B[x^3])/3) + O[x]^(terms + 1) // Normal, terms + 1];
A[x_] = 1/(1 - x*B[x]^2) + O[x]^(terms + 1);
CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jan 10 2018 *)
A287211
The number of plane rooted complete ternary trees with 2n+1 unlabeled leaves (hence n internal nodes including the root where n starts at 0) satisfying these two conditions: (1) if one of the three children of any internal node is the greatest in deglex order then that child is not the leftmost child; (2) if one of the three children of any internal node is the smallest in deglex order then that child is not the rightmost child. Deglex order refers to degree-lexicographical order defined inductively on the number of leaves (see details under Comments).
Original entry on oeis.org
1, 1, 2, 6, 21, 78, 308, 1264, 5332, 22994, 100896, 449004
Offset: 0
Association types for arities 1, 3, 5, 7 are as follows in deglex order. See Links for a-file with association types for arities up to 11.
Arity 1, number of types 1:
a.
Arity 3, number of types 1:
[abc].
Arity 5, number of types 2:
[ab[cde]],
[a[bcd]e].
Arity 7, number of types 6:
[ab[cd[efg]]],
[ab[c[def]g]],
[a[bcd][efg]],
[a[bc[def]]g],
[a[b[cde]f]g],
[[abc]d[efg]].
A375438
Expansion of g.f. A(x) satisfying A(x) = x + x^2 + (A(x)^3 + 2*A(x^3))/3.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 6, 12, 24, 46, 93, 191, 393, 819, 1724, 3648, 7772, 16654, 35850, 77520, 168289, 366629, 801328, 1756620, 3861157, 8508247, 18791480, 41591566, 92237598, 204931918, 456096480, 1016720162, 2269865456, 5074732028, 11360680664, 25464831258, 57146836290
Offset: 1
G.f.: A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 12*x^8 + 24*x^9 + 46*x^10 + 93*x^11 + 191*x^12 + 393*x^13 + 819*x^14 + 1724*x^15 + ...
where A(x) = x + x^2 + (A(x)^3 + 2*A(x^3))/3.
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 18*x^7 + 36*x^8 + 70*x^9 + 138*x^10 + 279*x^11 + 571*x^12 + 1179*x^13 + 2457*x^14 + 5168*x^15 + ...
Let B(x) be the series reversion, B(A(x)) = x, then B(x) begins
B(x) = x - x^2 + x^3 - x^4 + 3*x^6 - 8*x^7 + 9*x^8 + 18*x^9 - 134*x^10 + 442*x^11 - 997*x^12 + 1428*x^13 - 10*x^14 - 7640*x^15 + ...
SPECIFIC VALUES.
A(2/5) = 0.741461459188681119672668058998130332678610537393868...
A(1/3) = 0.515838591521774544528452689654484632143493145820237...
A(1/4) = 0.335691575266570204286454430830296229544471248787335...
A(1/5) = 0.250623759777806277498640241328479184446996870792060...
A(1/6) = 0.200220725056085320106333620370114891484630832364434...
-
{a(n) = my(A=[0,1],Ax=x); for(i=1,n, A = concat(A,0); Ax=Ser(A);
A[#A] = polcoeff( x + x^2 + ( Ax^3 + 2*subst(Ax,x,x^3))/3 - Ax,#A-1) );A[n+1]}
for(n=1,40,print1(a(n),", "))
A005628
Number of chiral planted trees with n nodes.
Original entry on oeis.org
0, 0, 0, 0, 2, 6, 20, 60, 176, 510, 1484, 4314, 12624, 37126, 109864, 326958, 978528, 2943384, 8895792, 27001378, 82281216, 251636434, 772101086, 2376186784, 7333094178, 22688117658, 70360646672, 218678194238, 681016789056
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 1 to 55 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k],k=0..n-j),j=1..n))/n od:p[0]:=1: for n from 0 to 50 do p[n+1]:=sum(s[k]*p[n-2*k],k=0..floor(n/2)) od:seq(s[n]-p[n],n=0..37); # here s[n]=A000625 and p[n]=A005627(n)
-
nmax = 28;
s[0] = s[1] = 1; s[_] = 0;
Do[s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n, {n, 1, nmax}];
p[0] = 1;
Do[p[n+1] = Sum[s[k]*p[n-2*k], {k, 0, Floor[n/2]}], {n, 0, nmax}];
a[n_] := s[n] - p[n];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 07 2024, after Maple code *)
A005629
Number of achiral trees with n nodes.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 7, 14, 21, 40, 61, 118, 186, 355, 567, 1081, 1755, 3325, 5454, 10306, 17070, 32136, 53628, 100704, 169175, 316874, 535267, 1000524, 1698322, 3168500, 5400908, 10059823, 17211368, 32010736, 54947147, 102059572, 175702378
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- L. Bytautats and D. J. Klein, Alkane Isomer Combinatorics: Stereostructure enumeration and graph-invariant and molecular-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803, Table 1.
- R. W. Robinson, F. Harary and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.
- R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
- Index entries for sequences related to trees
-
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 1 to 55 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k],k=0..n-j),j=1..n))/n od: p[0]:=1: for n from 0 to 50 do > p[n+1]:=sum(s[k]*p[n-2*k],k=0..floor(n/2)) od:seq(p[j],j=0..45): P:=proc(n) if floor(n)=n then p[n] else 0 fi end:S:=proc(n) if floor(n)=n then s[n] else 0 fi end:t:=n->(P(n)+S(n/2)+S((n-1)/4))/2: seq(t(n),n=1..40); # here s[n]=A000625(n), p[n]=A005627(n). - Emeric Deutsch, Nov 21 2004
-
nmax = 37;
s[0] = s[1] = 1; s[_] = 0;
Do[s[n + 1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n - j - k], {k, 0, n - j}], {j, 1, n}])/n, {n, 1, nmax}];
p[0] = 1;
Do[p[n + 1] = Sum[s[k]*p[n - 2 k], {k, 0, Floor[n/2]}]; a[n + 1] = (p[n + 1] + s[(n + 1)/2] + s[n/4])/2, {n, 0, nmax}];
a[n_] := s[n] - p[n];
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Jul 07 2024, after Maple code *)
A005630
Number of chiral trees with n nodes.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 4, 10, 34, 96, 284, 782, 2226, 6208, 17560, 49618, 141500, 405104, 1168316, 3386538, 9875232, 28939944, 85235762, 252159572, 749160544, 2234378156, 6688358338, 20088296030, 60524845158, 182893018756
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- L. Bytautats and D. J. Klein, Alkane Isomer Combinatorics: Stereostructure enumeration and graph-invariant and molecular-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803, Table 1.
- R. W. Robinson, F. Harary and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.
- R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
- Index entries for sequences related to trees
A005957
Number of acyclic ketone and aldehyde stereo-isomers with n carbon atoms.
Original entry on oeis.org
1, 1, 2, 3, 8, 18, 47, 123, 338, 935, 2657, 7616, 22138, 64886, 191873, 571169, 1711189, 5153883, 15599094, 47415931, 144692886, 443091572, 1361233280, 4194107380, 12957209782, 40128629400, 124562327944, 387467513732, 1207633413980
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 44.
- Jianji Wang, Ruxiong Li, and Shen Wang, Enumeration of isomers of acyclic saturated hydroxyl ethers, Journal of Mathematical Chemistry 33 (2003), 171-179.
a(23) corrected, title improved, and more terms from
Sean A. Irvine, Nov 12 2016
A005961
Number of acyclic disubstituted alkanes with n carbon atoms and identical substituents.
Original entry on oeis.org
1, 2, 5, 13, 37, 108, 325, 993, 3070, 9564, 29979, 94392, 298311, 945592, 3005021, 9570559, 30539044, 97611676, 312462096, 1001554565, 3214232129, 10326580526, 33210135104, 106901289420, 344398593149, 1110395171502, 3582666470285, 11567123373968
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A005955
Number of acyclic secondary alcohols with n carbon atoms.
Original entry on oeis.org
1, 2, 5, 14, 36, 98, 273, 768, 2197, 6360, 18584, 54780, 162672, 486154, 1461197, 4413988, 13393855, 40807290, 124783669, 382842018, 1178140280, 3635626680, 11247841224, 34880346840, 108402132544, 337576497920, 1053229358252, 3291813720292
Offset: 3
G.f. = x^3 + 2*x^4 + 5*x^5 + 14*x^6 + 36*x^7 + 98*x^8 + 273*x^9 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A005956
Number of acyclic tertiary alcohols with n carbon atoms.
Original entry on oeis.org
1, 1, 3, 10, 27, 79, 234, 686, 2036, 6080, 18224, 54920, 166245, 505201, 1541014, 4716540, 14480699, 44586619, 137648341, 425992838, 1321362034, 4107332002, 12792440104, 39915889304, 124762916912, 390594099694, 1224682772872, 3845389399882
Offset: 4
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Comments