A258174
Sum over all Dyck paths of semilength n of products over all peaks p of x_p*y_p, where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 7, 84, 1486, 35753, 1111931, 43150593, 2035666985, 114412223081, 7538224510181, 574552299138202, 50096579094908148, 4949493445607316419, 549534510282406667069, 68071071679372210762156, 9347203754680124767253730, 1414740620049957735248175695
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258175,
A258176,
A258177,
A258178,
A258179,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x*y, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x*y, 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258175
Sum over all Dyck paths of semilength n of products over all peaks p of x_p+y_p, where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 2, 12, 114, 1448, 22770, 424164, 9095450, 220023184, 5914998594, 174682531260, 5614908340866, 194967208057272, 7267467723747218, 289270983756577620, 12239218862861690250, 548301077168477951520, 25918121712918957399426, 1288797080051656060595820
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258176,
A258177,
A258178,
A258179,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x+y, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x + y, 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258176
Sum over all Dyck paths of semilength n of products over all peaks p of x_p^y_p, where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 7, 142, 9354, 2503597, 3260627607, 24105227716863, 1028836978599566213, 290383808553140390346475, 511963364817949502725911280781, 6704846980724405836568589845161191576, 584709361918378923208855262622537662297053728
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258177,
A258178,
A258179,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x^y, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..15);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x^y, 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258177
Sum over all Dyck paths of semilength n of products over all peaks p of y_p^x_p, where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 5, 112, 15312, 22928885, 475971133797, 164769697242392241, 1674694178196441599627207, 434453335415659344048321288040053, 2772047111897899211702422870954450438220795, 919691726760748842849028933552012720445531166591469510
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258178,
A258179,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, y^x, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..15);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, y^x, 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258178
Sum over all Dyck paths of semilength n of products over all peaks p of x_p^2, where x_p is the x-coordinate of peak p.
Original entry on oeis.org
1, 1, 13, 414, 24324, 2279209, 311524201, 58467947511, 14424374692879, 4525566110365523, 1759527523008436279, 830255082140922306224, 467382831980334193769718, 309419146352957449765072455, 237980526477430552734199922151, 210427994109788912088395561755374
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258177,
A258179,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x^2, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x^2, 1] + b[x - 1, y + 1, True] ]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258179
Sum over all Dyck paths of semilength n of products over all peaks p of y_p^2, where y_p is the y-coordinate of peak p.
Original entry on oeis.org
1, 1, 5, 34, 312, 3649, 52161, 889843, 17796555, 411120395, 10838039407, 322752018060, 10762432731362, 398802951148255, 16312276452291935, 732189190349581890, 35876807697443520000, 1910107567584518883891, 110035833179472385285367, 6832792252684597270659486
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258177,
A258178,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, y^2, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
nmax = 20; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - x/( (k+2)^2*x - 1/g[k+1]); CoefficientList[Series[g[0], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2015, after Sergei N. Gladkovskii *)
A258180
Sum over all Dyck paths of semilength n of products over all peaks p of C(x_p,y_p), where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 4, 33, 517, 15326, 852912, 91023697, 19716262702, 8794395041567, 8016790849841585, 15556074485786226848, 64891787190080888991273, 561815453349204340865790817, 10402242033224422585780623039909, 423787530114579490372987256671625678
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258177,
A258178,
A258179,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, binomial(x, y), 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, Binomial[x, y], 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258181
Sum over all Dyck paths of semilength n of products over all peaks p of 2^(x_p-y_p), where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 5, 89, 5933, 1540161, 1584150165, 6497470064169, 106497075348688637, 6980195689972655145233, 1829876050804408046228327525, 1918781572083632396857805205324025, 8047973452254281276702044410544321359565, 135022681866797995009325363468217320506328688097
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258177,
A258178,
A258179,
A258180.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, 2^(x-y), 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..15);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, 2^(x - y), 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A053979
Triangle T(n,k) giving number of rooted maps regardless of genus with n edges and k nodes (n >= 0, k = 1..n+1).
Original entry on oeis.org
1, 1, 1, 3, 5, 2, 15, 32, 22, 5, 105, 260, 234, 93, 14, 945, 2589, 2750, 1450, 386, 42, 10395, 30669, 36500, 22950, 8178, 1586, 132, 135135, 422232, 546476, 388136, 166110, 43400, 6476, 429, 2027025, 6633360, 9163236, 7123780, 3463634, 1092560, 220708, 26333, 1430
Offset: 0
A(x;t) = t + (t + t^2)*x + (3*t + 5*t^2 + 2*t^3)*x^2 + (15*t + 32*t^2 + 22*t^3 + 5*t^4)*x^3 + ...
Triangle begins :
n\k [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 1, 1;
[2] 3, 5, 2;
[3] 15, 32, 22, 5;
[4] 105, 260, 234, 93, 14;
[5] 945, 2589, 2750, 1450, 386, 42;
[6] 10395, 30669, 36500, 22950, 8178, 1586, 132;
[7] 135135, 422232, 546476, 388136, 166110, 43400, 6476, 429;
[8] ...
- Gheorghe Coserea, Rows n=0..100, flattened
- D. Arques and J.-F. Beraud, Rooted maps on orientable surfaces, Riccati's equation and continued fractions, Discrete Math., 215 (2000), 1-12.
- R. Cori, Indecomposable permutations, hypermaps and labeled Dyck paths, arXiv:0812.0440v1 [math.CO], 2008.
- R. Cori, Indecomposable permutations, hypermaps and labeled Dyck paths, Journal of Combinatorial Theory, Series A 116 (2009) 1326-1343.
- J. Courtiel, K. Yeats, Connected chord diagrams and bridgeless maps, arXiv:1611.04611, eq. (18)
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. I, J. Comb. Theory B 13 (1972), 192-218, eq. (5).
-
G:=t/(1-(t+1)*z/(1-(t+2)*z/(1-(t+3)*z/(1-(t+4)*z/(1-(t+5)*z/(1-(t+6)*z/(1-(t+7)*z/(1-(t+8)*z/(1-(t+9)*z/(1-(t+10)*z/(1-(t+11)*z/(1-(t+12)*z)))))))))))):Gser:=simplify(series(G,z=0,10)):P[0]:=t:for n from 1 to 9 do P[n]:=sort(expand(coeff(Gser,z^n))) od:seq(seq(coeff(P[n],t^k),k=1..n+1),n=0..9); # Emeric Deutsch, Apr 01 2005
-
g = t/Fold[1-((t+#2)*z)/#1&, 1, Range[12, 1, -1]]; T[n_, k_] := SeriesCoefficient[g, {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
-
A053979_ser(N,t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++, y1 = (1 + t*x*y0^2 + 2*x^2*y0')/(1-x);
if (y1 == y0, break()); y0 = y1); y0;
};
concat(apply(p->Vecrev(p), Vec(A053979_ser(10))))
\\ test: y=A053979_ser(50); 2*x^2*deriv(y,x) == -t*x*y^2 + (1-x)*y - 1
\\ Gheorghe Coserea, May 31 2017
-
A053979_seq(N) = {
my(t='t, R=vector(N), S=vector(N)); R[1]=S[1]=t;
for (n=2, N,
R[n] = t*subst(S[n-1],t,t+1);
S[n] = R[n] + sum(k=1, n-1, R[k]*S[n-k]));
apply(p->Vecrev(p), R/t);
};
concat(A053979_seq(10))
\\ test: y=t*Ser(apply(p->Polrev(p,'t), A053979_seq(50)),'x); y == t + x*y^2 + x*y + 2*x^2*deriv(y,x) && y == t + x*y*subst(y,t,t+1) \\ Riccati eq && Dyck eq
\\ Gheorghe Coserea, May 31 2017
A105623
Matrix square-root of triangle A105615.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 26, 10, 3, 1, 226, 74, 19, 4, 1, 2426, 706, 167, 31, 5, 1, 30826, 8162, 1831, 320, 46, 6, 1, 451586, 110410, 23843, 4021, 548, 64, 7, 1, 7489426, 1708394, 358339, 59024, 7801, 866, 85, 8, 1, 138722426, 29752066, 6097607, 987763, 127985
Offset: 0
Triangle begins:
1;
1,1;
4,2,1;
26,10,3,1;
226,74,19,4,1;
2426,706,167,31,5,1;
30826,8162,1831,320,46,6,1;
451586,110410,23843,4021,548,64,7,1;
7489426,1708394,358339,59024,7801,866,85,8,1;
138722426,29752066,6097607,987763,127985,13801,1289,109,9,1; ...
-
T(n,k)=local(R,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-1); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n
Comments