cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A079288 a(n) = (3^n)!.

Original entry on oeis.org

1, 6, 362880, 10888869450418352160768000000
Offset: 0

Views

Author

Cino Hilliard, Feb 08 2003

Keywords

Comments

Next term is too large to include.
Sum_{n>0} 1/a(n) = 0.1666694223985890... or about 1/6. This is evident since 1/3! =0.166666666666.. 1/9! =0.0000027557319223985.. 1/27!=0.00000000000000000000000000091836898637955461.. for example shows that succeeding terms have little influence on the first term 1/6. A000722 has the same property of about 1/2 but it is not evident since in 1/2! + 1/4! + 1/8! 1/4! and 1/8! have an immediate effect on the first term 1/2. So the limit of sum(1/(x^n)!) -> 1/x! as x,n -> oo

Crossrefs

Programs

  • PARI
    atonfact(a,n) = {sr=0; for(x=1,n, y =(a^x)!; \-((a-1)^x)!; sr+=1.0/y; print1(y" "); ); print(); print(sr) } usage: ? atonfact(3,n) n=1,2,..
    
  • PARI
    a(n) = (3^n)! \\ Michel Marcus, Sep 14 2015

Formula

a(n) = A000142(A000244(n)). - Michel Marcus, Sep 14 2015

A244060 Sum of digits of (2^n)!.

Original entry on oeis.org

1, 2, 6, 9, 63, 108, 324, 828, 1989, 4635, 10845, 24363, 54279, 118827, 258705, 565389, 1216134, 2611359, 5584518, 11875977, 25184205, 53209728, 112069377, 235502361, 493827687, 1033041267, 2156974227, 4495662081, 9355185828, 19437382512, 40329016200
Offset: 0

Views

Author

Robert G. Wilson v, Jun 18 2014

Keywords

Examples

			If n=4, 2^4! = 16! = 20922789888000, with digit sum 63. - _N. J. A. Sloane_, Jun 18 2014
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Total[ IntegerDigits[ (2^n)!]]; Array[f, 20, 0]
  • PARI
    a(n) = sumdigits((2^n)!); \\ Michel Marcus, Oct 25 2021
    
  • Python
    from math import factorial
    def A244060(n): return sum(int(d) for d in str(factorial(2**n))) # Chai Wah Wu, Oct 26 2021

Formula

a(n) = A007953(A000722(n)). - Michel Marcus, Jun 19 2014

Extensions

a(26)-a(30) from Chai Wah Wu, Oct 25 2021

A244061 The number of digits of (2^n)!.

Original entry on oeis.org

1, 1, 2, 5, 14, 36, 90, 216, 507, 1167, 2640, 5895, 13020, 28504, 61937, 133734, 287194, 613842, 1306594, 2771010, 5857670, 12346641, 25955890, 54436999, 113924438, 237949763, 496101303, 1032606162, 2146019444, 4453653132, 9230534755
Offset: 0

Views

Author

Robert G. Wilson v, Jun 18 2014

Keywords

Crossrefs

Programs

  • Mathematica
    LogBase10Stirling[n_] := Floor[ Log[10, 2 Pi n]/2 + n*Log[10, n/E] + Log[10, 1 + 1/(12 n) + 1/(288 n^2) - 139/(51840 n^3) - 571/(2488320 n^4) + 163879/(209018880 n^5)]]; Table[ LogBase10Stirling[2^n] + 1, {n, 0, 30}]
    IntegerLength[(2^Range[0,30])!] (* Harvey P. Dale, Nov 05 2021 *)

A259326 Ceiling of ((2^n)!+(2^n-1)^2*(2^(n-1))!*2^(2^(n-1)))/(4^n*(n!)^2).

Original entry on oeis.org

1, 2, 26, 141907500, 17844701940490373256193966080, 59757436204078657410908164193971177467473348779378572774972093904092502425600000
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

Crossrefs

Programs

  • Maple
    # Maple code for A259326, A259327, A259328, A259329, A259330, A259331:
    f:=n->((2^n)!+(2^n-1)^2*(2^(n-1))!*2^(2^(n-1)))/(4^n*(n!)^2);
    f:=n->((2^n)!)/(4^n*(n!)^2);
    f:=n->((2^n)!)/(2^(n*(n-1))*mul((2^i-1)^2,i=1..n));
    f:=n->((2^n)!)/(4^(n^2));
    f:=n->((2^n)!)/(2^(n*(n+1))*mul((2^i-1)^2,i=1..n));
    f:=n->((2^n)!)/(4^n*2^(2*n^2));
    [seq(ceil(f(n)),n=1..6)];

A259327 Ceiling of ((2^n)!)/(4^n*(n!)^2).

Original entry on oeis.org

1, 1, 18, 141891750, 17844701940490283892633600000, 59757436204078657410908164193971177467471236322918735173920946651136000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

A259328 Ceiling of ((2^n)!)/(2^(n*(n-1))*Product((2^i-1)^2,i=1..n)).

Original entry on oeis.org

2, 1, 2, 51480, 2631645209144487019355, 312242081385925594286511113381220856098317029402428309504000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

A259329 Ceiling of ((2^n)!)/(4^(n^2)).

Original entry on oeis.org

1, 1, 1, 4872, 233707130922139265799, 26869353034366501299843095760875674032159666449783949888006055355073
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

A259330 Ceiling of ((2^n)!)/(2^(n*(n+1))*Product((2^i-1)^2,i=1..n)).

Original entry on oeis.org

1, 1, 1, 202, 2569966024555163105, 76230976900860740792605252290337123070878181006452224000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

A079286 a(n) = (3^n)! - (2^n)!.

Original entry on oeis.org

0, 4, 362856, 10888869450418352160767959680
Offset: 0

Views

Author

Cino Hilliard, Feb 08 2003

Keywords

Comments

Sum_{n>0} 1/a(n) = 0.25000275591...
The next term is too large to include.
The next term (a(4)) has 121 digits. - Harvey P. Dale, Jan 10 2024

Crossrefs

Programs

  • Mathematica
    Table[(3^n)!-(2^n)!,{n,0,4}] (* Harvey P. Dale, Jan 10 2024 *)
  • PARI
    atonfact(n) = {for(x=0, n, y = (3^x)!-(2^x)!; print1(y, ", "));}

Formula

a(n) = A079288(n) - A000722(n). - Michel Marcus, Jul 08 2024

A259331 Ceiling of ((2^n)!)/(4^n*2^(2*n^2)).

Original entry on oeis.org

1, 1, 1, 20, 228229620041151627, 6559900643155884106407005800995037605507731066841784640626478359
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

Crossrefs

Programs

  • Maple
    f:=n->((2^n)!)/(4^n*2^(2*n^2));
    [seq(ceil(f(n)),n=1..6)];
Previous Showing 11-20 of 24 results. Next