A079288
a(n) = (3^n)!.
Original entry on oeis.org
1, 6, 362880, 10888869450418352160768000000
Offset: 0
-
atonfact(a,n) = {sr=0; for(x=1,n, y =(a^x)!; \-((a-1)^x)!; sr+=1.0/y; print1(y" "); ); print(); print(sr) } usage: ? atonfact(3,n) n=1,2,..
-
a(n) = (3^n)! \\ Michel Marcus, Sep 14 2015
A244060
Sum of digits of (2^n)!.
Original entry on oeis.org
1, 2, 6, 9, 63, 108, 324, 828, 1989, 4635, 10845, 24363, 54279, 118827, 258705, 565389, 1216134, 2611359, 5584518, 11875977, 25184205, 53209728, 112069377, 235502361, 493827687, 1033041267, 2156974227, 4495662081, 9355185828, 19437382512, 40329016200
Offset: 0
If n=4, 2^4! = 16! = 20922789888000, with digit sum 63. - _N. J. A. Sloane_, Jun 18 2014
-
f[n_] := Total[ IntegerDigits[ (2^n)!]]; Array[f, 20, 0]
-
a(n) = sumdigits((2^n)!); \\ Michel Marcus, Oct 25 2021
-
from math import factorial
def A244060(n): return sum(int(d) for d in str(factorial(2**n))) # Chai Wah Wu, Oct 26 2021
A244061
The number of digits of (2^n)!.
Original entry on oeis.org
1, 1, 2, 5, 14, 36, 90, 216, 507, 1167, 2640, 5895, 13020, 28504, 61937, 133734, 287194, 613842, 1306594, 2771010, 5857670, 12346641, 25955890, 54436999, 113924438, 237949763, 496101303, 1032606162, 2146019444, 4453653132, 9230534755
Offset: 0
-
LogBase10Stirling[n_] := Floor[ Log[10, 2 Pi n]/2 + n*Log[10, n/E] + Log[10, 1 + 1/(12 n) + 1/(288 n^2) - 139/(51840 n^3) - 571/(2488320 n^4) + 163879/(209018880 n^5)]]; Table[ LogBase10Stirling[2^n] + 1, {n, 0, 30}]
IntegerLength[(2^Range[0,30])!] (* Harvey P. Dale, Nov 05 2021 *)
A259326
Ceiling of ((2^n)!+(2^n-1)^2*(2^(n-1))!*2^(2^(n-1)))/(4^n*(n!)^2).
Original entry on oeis.org
1, 2, 26, 141907500, 17844701940490373256193966080, 59757436204078657410908164193971177467473348779378572774972093904092502425600000
Offset: 1
-
# Maple code for A259326, A259327, A259328, A259329, A259330, A259331:
f:=n->((2^n)!+(2^n-1)^2*(2^(n-1))!*2^(2^(n-1)))/(4^n*(n!)^2);
f:=n->((2^n)!)/(4^n*(n!)^2);
f:=n->((2^n)!)/(2^(n*(n-1))*mul((2^i-1)^2,i=1..n));
f:=n->((2^n)!)/(4^(n^2));
f:=n->((2^n)!)/(2^(n*(n+1))*mul((2^i-1)^2,i=1..n));
f:=n->((2^n)!)/(4^n*2^(2*n^2));
[seq(ceil(f(n)),n=1..6)];
A259327
Ceiling of ((2^n)!)/(4^n*(n!)^2).
Original entry on oeis.org
1, 1, 18, 141891750, 17844701940490283892633600000, 59757436204078657410908164193971177467471236322918735173920946651136000000000000
Offset: 1
A259328
Ceiling of ((2^n)!)/(2^(n*(n-1))*Product((2^i-1)^2,i=1..n)).
Original entry on oeis.org
2, 1, 2, 51480, 2631645209144487019355, 312242081385925594286511113381220856098317029402428309504000000000000
Offset: 1
A259329
Ceiling of ((2^n)!)/(4^(n^2)).
Original entry on oeis.org
1, 1, 1, 4872, 233707130922139265799, 26869353034366501299843095760875674032159666449783949888006055355073
Offset: 1
A259330
Ceiling of ((2^n)!)/(2^(n*(n+1))*Product((2^i-1)^2,i=1..n)).
Original entry on oeis.org
1, 1, 1, 202, 2569966024555163105, 76230976900860740792605252290337123070878181006452224000000000000
Offset: 1
A079286
a(n) = (3^n)! - (2^n)!.
Original entry on oeis.org
0, 4, 362856, 10888869450418352160767959680
Offset: 0
-
Table[(3^n)!-(2^n)!,{n,0,4}] (* Harvey P. Dale, Jan 10 2024 *)
-
atonfact(n) = {for(x=0, n, y = (3^x)!-(2^x)!; print1(y, ", "));}
A259331
Ceiling of ((2^n)!)/(4^n*2^(2*n^2)).
Original entry on oeis.org
1, 1, 1, 20, 228229620041151627, 6559900643155884106407005800995037605507731066841784640626478359
Offset: 1
Comments