cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A119886 a(n) = 20*a(n-2) - 64*a(n-4).

Original entry on oeis.org

1, 59, 2416, 6230, 47680, 120824, 798976, 2017760, 12928000, 32622464, 207425536, 523312640, 3321118720, 8378415104, 53147140096, 134076293120, 850391203840, 2145307295744, 13606407110656, 34325263155200, 217703105167360, 549205596176384, 3483252048265216
Offset: 0

Views

Author

Roger L. Bagula, Aug 09 2006

Keywords

Crossrefs

Programs

  • Mathematica
    M = {{0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0}, {1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1}, {0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0}} v[1] = Table[Fibonacci[n], {n, 1, 16}] v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
    (* Second program: *)
    A = SparseArray[{{1, 8} -> 1, Band[{1, 4}] -> 1, Band[{1, 2}, {3, 4}] -> 1, Band[{5, 6}, {7, 8}] -> 1}, {8, 8}]; M = ArrayFlatten[{{A+Transpose[A], IdentityMatrix[8]}, {IdentityMatrix[8], A+Transpose[A]}}]; v[1] = Array[ Fibonacci, 16]; v[n_] := v[n] = M.v[n-1]; A119886 = Array[v, 50][[All, 1]] (* Jean-François Alcover, Feb 05 2017 *)
    LinearRecurrence[{0,20,0,-64},{1,59,2416,6230,47680},30] (* Harvey P. Dale, Sep 06 2024 *)
  • PARI
    Vec(-(576*x^4-5050*x^3-2396*x^2-59*x-1) / ((2*x-1)*(2*x+1)*(4*x-1)*(4*x+1)) + O(x^30)) \\ Colin Barker, Feb 05 2017

Formula

G.f.: -(576*x^4-5050*x^3-2396*x^2-59*x-1) / ((2*x-1)*(2*x+1)*(4*x-1)*(4*x+1)). - Colin Barker, Nov 17 2012
a(n) = 2^(n-4)*(-3266 + 585*(-2)^n + 258*(-1)^n + 2583*2^n) for n>0. - Colin Barker, Feb 05 2017

Extensions

New name from Joerg Arndt, Feb 05 2017

A330079 Number of n-step self-avoiding walks starting at the origin that are restricted to the boundary walls of the first octant of the cubic lattice.

Original entry on oeis.org

1, 3, 9, 27, 75, 213, 585, 1623, 4425, 12123, 32883, 89415, 241557, 653649, 1760427, 4747005, 12754593, 34301463, 91990575, 246880023, 661075149, 1771199169, 4736741853, 12673587057, 33856816431, 90482953989, 241499070195, 644781165933, 1719559634451, 4587222964881, 12225165127887
Offset: 0

Views

Author

Francois Alcover, Nov 30 2019

Keywords

Comments

These are walks in the first octant of the cubic lattice, never leaving the three walls forming the octant. The walls are the sets of points (x>=0, y>=0, z=0), (x>=0, y=0, z>=0), and (x=0, y>=0, z>=0) with (x,y,z) in Z^3.

Crossrefs

The "snake in the box" problem (A000937, A099155) has a similar flavor. - N. J. A. Sloane, Dec 01 2019

Extensions

a(18)-a(25) Scott R. Shannon, Aug 17 2020
a(26)-a(30) from Bert Dobbelaere, Oct 28 2023

A072934 Length of longest non-crossing walk along vertices of n-dimensional hypercubes.

Original entry on oeis.org

1, 4, 9, 20, 41, 84, 169, 255
Offset: 1

Views

Author

George Taylor (taylorg(AT)hushmail.com), Aug 20 2002

Keywords

Comments

Found using greedy algorithm.
Note that it is not true that a(n+1)>2*a(n): 255 = a(8) < 2*a(7) = 2*169 = 338. - Stefan Steinerberger, Mar 14 2006
This sequence needs a better definition and an explanation as to what "greedy algorithm" means in this context. - Sean A. Irvine, Nov 05 2024

Crossrefs

A000937 studies a similar problem.
Previous Showing 11-13 of 13 results.