cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A102926 Smallest prime factor in product of previous terms +1 or -1.

Original entry on oeis.org

2, 3, 5, 29, 11, 7, 13, 37, 17, 79, 23, 4129, 193, 2593, 101, 19, 39163, 577, 26431, 131, 308798542881428667318174028327605372989, 103, 163, 179, 293, 127, 6287, 683437, 31, 89, 13590243019242466336587034391, 113, 2207, 59, 109, 223, 2351
Offset: 1

Views

Author

Marc LeBrun, Jan 19 2005

Keywords

Comments

A variant of the Euclid-Mullin construction.
This sequence is listed on the OEIS wiki page "OEIS sequences needing factors" and on the corresponding thread on mersenneforum.org. - M. F. Hasler, Mar 21 2013

Examples

			a(5)=11 because 2*3*5*29=870, 869=11*79, 871=13*67.
a(31) = 13590243019242466336587034391 because this is the least prime factor of A102927(30)+1. The least prime factor of A102927(30)-1 is 44989026625856465412069667987. Remarkably, both are 29-digit numbers. - _David Wasserman_, Apr 15 2008
		

Crossrefs

Programs

  • Mathematica
    spf[{p_,a_}]:=With[{f=FactorInteger[p^2-1][[1,1]]},{p*f,f}]; NestList[ spf,{2,2},36][[All,2]] (* Harvey P. Dale, May 05 2018 *)

Formula

a(n) = least prime factor of b(n)^2-1, where b(n) = product a(k), 0A102927.

Extensions

More terms from Don Reble, Jan 23 2005, corrected Sep 26 2006
Further terms from David Wasserman, Apr 15 2008

A217759 Primes of the form 4k+3 generated recursively: a(1)=3, a(n)= Min{p; p is prime; Mod[p,4]=3; p|4Q^2-1}, where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

3, 7, 43, 19, 6863, 883, 23, 191, 2927, 205677423255820459, 11, 163, 227, 9127, 59, 31, 71, 131627, 2101324929412613521964366263134760336303, 127, 1302443, 4065403, 107, 2591, 21487, 223, 12823, 167, 53720906651, 5452254637117019, 39827899, 11719, 131
Offset: 1

Views

Author

Daran Gill, Mar 23 2013

Keywords

Comments

Contrast A057207, where all the factors are congruent to 1 (mod 4), here only one is guaranteed to be congruent to 3 (mod 4).

Examples

			a(10) is 205677423255820459 because it is the only prime factor congruent to 3 (mod 4) of 4*(3*7*43*19*6863*883*23*191*2927)^2-1 = 5*13*2088217*256085119729*205677423255820459. The four smaller factors are all congruent to 1 (mod 4).
		

References

  • Dirichlet,P.G.L (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 13.

Crossrefs

A240803 a(n) = 2 + product of first n odd primes.

Original entry on oeis.org

5, 17, 107, 1157, 15017, 255257, 4849847, 111546437, 3234846617, 100280245067, 3710369067407, 152125131763607, 6541380665835017, 307444891294245707, 16294579238595022367, 961380175077106319537, 58644190679703485491637, 3929160775540133527939547, 278970415063349480483707697
Offset: 1

Views

Author

N. J. A. Sloane, Apr 14 2014

Keywords

Crossrefs

Programs

  • Magma
    [2+&*[NthPrime(i+1): i in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Apr 15 2014
  • Mathematica
    Table[Product[Prime[k + 1], {k, 1, n}] + 2, {n, 1, 30}] (* Vincenzo Librandi, Apr 15 2014 *)

A240804 a(n) = -2 + product of first n odd primes.

Original entry on oeis.org

1, 13, 103, 1153, 15013, 255253, 4849843, 111546433, 3234846613, 100280245063, 3710369067403, 152125131763603, 6541380665835013, 307444891294245703, 16294579238595022363, 961380175077106319533, 58644190679703485491633, 3929160775540133527939543, 278970415063349480483707693
Offset: 1

Views

Author

N. J. A. Sloane, Apr 14 2014

Keywords

Crossrefs

Programs

  • Magma
    [-2+&*[NthPrime(i+1): i in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Apr 15 2014
  • Mathematica
    Table[Product[Prime[k + 1], {k, 1, n}] - 2, {n, 1, 40}] (* Vincenzo Librandi, Apr 15 2014 *)
    Rest[FoldList[Times,1,Prime[Range[2,20]]]]-2 (* Harvey P. Dale, Mar 17 2015 *)

Formula

a(n) = A070826(n+1)-2. - R. J. Mathar, May 03 2017

A359504 a(n) is calculated by considering in ascending order all products P of zero or more terms from {a(1..n-1)} until finding one where P+1 has a prime factor not in {a(1..n-1)}, in which case a(n) is the smallest such prime factor.

Original entry on oeis.org

2, 3, 7, 5, 11, 23, 31, 17, 43, 47, 13, 67, 71, 79, 29, 59, 19, 103, 53, 107, 37, 131, 139, 73, 83, 167, 89, 179, 61, 41, 191, 101, 211, 109, 223, 239, 127, 263, 137, 283, 97, 151, 311, 331, 173, 347, 359, 367, 383, 193, 197, 419, 431, 439, 443, 149, 113, 227, 463
Offset: 1

Views

Author

Joel Brennan, Jan 03 2023

Keywords

Comments

A new prime is always found since at worst P can be the product of all primes {a(1..n-1)} and per Euclid's proof of the infinitude of primes, P+1 then certainly has a prime factor not among a(1..n-1).
Taking products P in ascending order generally results in smaller quantities to consider than always taking the product of all primes as done in A000945, the Euclid-Mullin sequence.
Conjecture: P+1 has at most one prime factor not already in the sequence, so the requirement of taking "the smallest such" is unnecessary.

Examples

			For n=1, the sole product P is the empty product P=1, and P+1 = 2 is itself prime so a(1) = 2.
For n=3, the primes so far are 2,3 but products P=2 or P=3 have P+1 = 3 or 4 which have no new prime factor. Product P = 2*3 = 6 has P+1 = 7 which is a new prime so a(3) = 7.
For n=4, the smallest product P with a new prime in P+1 is P = 2*7 = 14 for which P+1 = 15 and a(4) = 5 is its smallest new prime factor.
		

Crossrefs

Extensions

More terms from Kevin Ryde, Jan 10 2023

A051310 Euclid-Mullin sequence (A000945) with initial value a(1)=13 instead of a(1)=2.

Original entry on oeis.org

13, 2, 3, 79, 6163, 7, 1601, 11, 137, 5, 199, 151, 263, 983, 31, 83, 30187890723499, 23847817657, 37, 67, 9661, 251, 73, 1214623152057970133, 24597089626521443731307390760915220105471840174452030562332559181845834101711082531
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=13; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=factor(n)[1,1]
    first(m)=my(v=vector(m)); v[1]=13; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Aug 22 2015

A051311 Euclid-Mullin sequence (A000945) with initial value a(1)=17 instead of a(1)=2.

Original entry on oeis.org

17, 2, 5, 3, 7, 3571, 31, 395202571, 13, 29, 137, 23, 97, 1896893, 34138453466895150823580146142491, 4639, 61, 181, 43, 19, 11, 59, 25292522503108044617, 4909, 18305191, 467
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=17; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=factor(n)[1,1]
    first(m)=my(v=vector(m)); v[1]=17; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Aug 22 2015

A051313 Euclid-Mullin sequence (A000945) with initial value a(1)=23 instead of a(1)=2.

Original entry on oeis.org

23, 2, 47, 3, 13, 84319, 7109609443, 463, 23403050994721829453179, 7, 5, 57367, 239, 40237, 10575444619218059847586376042094152838881224222904607376771, 31333, 742759, 9444637217
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=23; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=factor(n)[1, 1]
    first(m)=my(v=vector(m)); v[1]=23; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Nov 22 2015

Extensions

a(18)-a(37) from Robert Price, Jul 17 2015

A051314 Euclid-Mullin sequence (A000945) with initial value a(1)=29 instead of a(1)=2.

Original entry on oeis.org

29, 2, 59, 3, 10267, 7, 5, 3689035771, 19, 396029, 489851, 2971, 179, 13, 4441009, 419, 79, 53, 3109, 538004633, 138285071, 241, 263, 443, 11, 17, 951837583454247922680798591029699, 739, 43, 181, 131, 3257, 31, 2237
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=29; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=factor(n)[1, 1]
    first(m)=my(v=vector(m)); v[1]=29; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Nov 21 2015

A051315 Euclid-Mullin sequence (A000945) with initial value a(1)=31 instead of a(1)=2.

Original entry on oeis.org

31, 2, 3, 11, 23, 47059, 7, 5, 89, 19, 2287, 233, 17, 647, 1607, 12637, 103, 13, 163, 4980301, 521, 83, 16561, 540233, 443516695049428313, 109, 37, 1811, 53, 487, 548519020982014152563328120144563684918808813765009178152503015356294212417026402782591
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    spf:= proc(n) local F;
      F:= select(type, map(t -> t[1], ifactors(n,easy)[2]), integer);
       if F <> [] then min(F)
       else min(numtheory:-factorset(n))
       fi
    end proc:
    a[1]:= 31:
    for i from 2 to 31 do
      a[i]:= spf(1 + mul(a[j],j=1..i-1))
    od:
    seq(a[i],i=1..31); # Robert Israel, Nov 25 2015
  • Mathematica
    a[1]=31; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    gpf(n)=my(f=factor(n)[, 1]); f[#f];
    first(m)=my(v=vector(m)); v[1]=31; for(i=2, m, v[i]=gpf(1+prod(j=1, i-1, v[j]))); v \\ Anders Hellström, Nov 25 2015
Previous Showing 21-30 of 52 results. Next