cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 590 results. Next

A153008 Catalan number A000108(n) minus Motzkin number A001006(n).

Original entry on oeis.org

0, 0, 0, 1, 5, 21, 81, 302, 1107, 4027, 14608, 52988, 192501, 701065, 2560806, 9384273, 34504203, 127288011, 471102318, 1749063906, 6513268401, 24323719461, 91081800417, 341929853235, 1286711419527, 4852902998951, 18341683253676
Offset: 0

Views

Author

Omar E. Pol, Dec 20 2008

Keywords

Comments

Number of Dyck n-paths with at least one UUU. - David Scambler, Sep 17 2012

Crossrefs

Programs

  • Maple
    A001006 := proc(n) (3/2)^(n+2)*add( 3^(-k)*A000108(k-1)*binomial(k,n+2-k), k=1..n+2) ; end:
    A153008 := proc(n) A000108(n)-A001006(n) ;
    end:
    seq(A153008(n),n=0..30) ; # R. J. Mathar, Jan 22 2009
  • Mathematica
    MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]];
    a[n_] := CatalanNumber[n] - MotzkinNumber[n];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Oct 27 2021 *)

Formula

a(n) = A000108(n) - A001006(n).
Conjecture: -(n+1)*(n-3)*(n+2)^2*a(n) +3*(n+1)*(2*n^3-n^2-15*n+8)*a(n-1) -(n-1)*(5*n^3-41*n+48)*a(n-2) -6*(n-1)*(n-2)*(2*n-5)*(n+3)*a(n-3)=0, n>=6 - R. J. Mathar, Mar 04 2018

A153787 Largest proper divisor of Motzkin number A001006(n).

Original entry on oeis.org

1, 2, 3, 7, 17, 1, 19, 167, 1094, 2899, 1, 13945, 56817, 155286, 284489, 785593, 3268191, 9099642, 16950673, 47515853, 133587741, 376586805, 1064242599, 1291914643, 12834909238, 36503886401, 1944142787, 19152993059, 1144562017
Offset: 2

Views

Author

Omar E. Pol, Jan 16 2009

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): M := proc (n) options operator, arrow: (sum((-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n), j = 0 .. floor((1/3)*n)))/(n+1) end proc: seq(divisors(M(i))[tau(M(i))-1], i = 2 .. 32); # Emeric Deutsch, Jan 18 2009
  • Mathematica
    mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; lpd[n_] := n / FactorInteger[n][[1, 1]]; Table[lpd[mot[n]], {n, 2, 30}] (* Amiram Eldar, Nov 26 2019 *)

Extensions

Extended by Emeric Deutsch, Jan 18 2009
a(23)-a(27) and a(29)-a(30) corrected by Amiram Eldar, Nov 26 2019

A154349 Sum of proper divisors minus the number of proper divisors of Motzkin number A001006(n).

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 18, 0, 34, 170, 1643, 3603, 0, 25118, 139063, 474559, 284490, 984006, 6536387, 24265729, 18678366, 96214018, 277799290, 1282283434, 2077807072, 1899874612, 19252363859, 44221482383, 1967547352, 29743945396, 1265868622
Offset: 0

Views

Author

Omar E. Pol, Jan 07 2009

Keywords

Comments

Note that, if a(n) != 0 then Motzkin number A001006(n) is a composite number (A002808), otherwise A001006(n) is a noncomposite number (A008578). See A152770.

Crossrefs

Programs

  • Maple
    with(numtheory): M := proc (n) options operator, arrow: (sum((-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n), j = 0 .. floor((1/3)*n)))/(n+1) end proc: seq(sigma(M(n))-M(n)-tau(M(n))+1, n = 0 .. 30); # Emeric Deutsch, Jan 12 2009
  • Mathematica
    mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; diff[n_] := DivisorSigma[1, n] - DivisorSigma[0, n] - n + 1; Table[diff[mot[n]], {n, 0, 30}] (* Amiram Eldar, Nov 26 2019 *)

Formula

a(n) = A001065(A001006(n)) - A032741(A001006(n)) = A152770(A001006(n)).

Extensions

Extended by Emeric Deutsch, Jan 12 2009

A154558 Triangle read by rows: binomial(n-1,k-1)*A001006(k).

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 6, 12, 9, 1, 8, 24, 36, 21, 1, 10, 40, 90, 105, 51, 1, 12, 60, 180, 315, 306, 127, 1, 14, 84, 315, 735, 1071, 889, 323, 1, 16, 112, 504, 1470, 2856, 3556, 2584, 835, 1, 18, 144, 756, 2646, 6426, 10668, 11628, 7515, 2188
Offset: 1

Views

Author

Gary W. Adamson, Jan 11 2009

Keywords

Examples

			First few rows of the triangle =
1;
1, 2;
1, 4, 4;
1, 6, 12, 9;
1, 8, 24, 36, 21;
1, 10, 40, 90, 105, 51;
1, 12, 60, 180, 315, 306, 127;
1, 14, 84, 315, 735, 1071, 889, 323;
1, 16, 112, 504, 1470, 2856, 3556, 2584, 835;
1, 18, 144, 756, 2646, 6426, 10668, 11628, 7515, 2188;
1, 20, 180, 1080, 4410, 12852, 26670, 38760, 37575, 21880, 5798;
...
		

Crossrefs

Cf. A001006, A000245 (row sums), A005843 (column k=2), A046092 (column k=3).

Formula

Binomial transform of a diagonalized version of the Motzkin sequence:
(A001006 (1, 2, 4, 9, 21, 51,...) as the main diagonal and the rest zeros.)
T(n,n) = A001006(n).

A154559 Triangle read by rows, A007318 * (A129186 * (A001006 * 0^(n-k))).

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 4, 6, 4, 0, 5, 12, 16, 9, 0, 6, 20, 40, 45, 21, 0, 7, 30, 80, 135, 126, 51, 0, 8, 42, 140, 315, 441, 357, 127, 0, 9, 56, 224, 630, 1176, 1428, 1016, 323, 0, 10, 72, 336, 1134, 2646, 4284, 4572, 2907, 835, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 11 2009

Keywords

Comments

Row sums = the Catalan numbers, A000108, starting with offset 1:
(1, 2, 5, 14, 42,...).

Examples

			First few rows of the triangle =
1;
2, 0;
3, 2, 0;
4, 6, 4, 0;
5, 12, 16, 9, 0;
6, 20, 40, 45, 21, 0;
7, 30, 80, 135, 126, 51, 0;
8, 42, 140, 315, 441, 357, 127, 0;
9, 56, 224, 630, 1176, 1428, 1016, 323, 0;
10, 72, 336, 1134, 2646, 4284, 4572, 2907, 835, 0;
11, 90, 480, 1890, 5292, 10710, 15240, 14535, 8350, 2188;
12, 110, 660, 2970, 9702, 23562, 41910, 53295, 45925, 24068, 5798;
...
		

Crossrefs

Formula

Triangle read by rows, A007318 * (A129186 * (A001006 * 0^(n-k)))
Binomial transform of a bidiagonal matrix with (1,0,0,0,..,.) as the main
diagonal and A001006 as the subddiagonal starting (1, 2, 4, 9, 21, 51,...).

A174169 A generalized Chebyshev transform of the Motzkin numbers A001006.

Original entry on oeis.org

1, 1, -1, -2, 0, 0, -3, 1, 8, 1, 1, 26, 7, -51, -3, 0, -264, -186, 348, -120, -285, 2697, 2871, -2304, 3393, 8029, -25795, -36872, 16108, -60010, -159683, 213795, 413712, -181857, 833779, 2669534, -1272977, -4030235, 3611168, -9145271, -39467427
Offset: 0

Views

Author

Paul Barry, Mar 10 2010

Keywords

Comments

Hankel transform is the (1,3) Somos-4 sequence A174170.

Formula

G.f.: (1-x+3x^2-sqrt(1-2x+3x^2-6x^3+9x^4))/(2x^2)=(1/(1+3x))*M(x/(1+3x^2)), M(x) the g.f. of A010006;
a(n) = sum{k=0..floor(n/2), (-3)^k*A001006(n-2k)}.
Conjecture: (n+2)*a(n) -(2*n+1)*a(n-1) +3*(n-1)*a(n-2) +3*(5-2*n)*a(n-3) +9*(n-4)*a(n-4)=0. - R. J. Mathar, Sep 30 2012

A174171 A generalized Chebyshev transform of the Motzkin numbers A001006.

Original entry on oeis.org

1, 1, 4, 8, 25, 65, 197, 571, 1753, 5351, 16746, 52626, 167547, 536559, 1732272, 5622960, 18357211, 60205319, 198323708, 655787680, 2176141555, 7244106347, 24185285341, 80960692691, 271685400443, 913784117809, 3079889039230
Offset: 0

Views

Author

Paul Barry, Mar 10 2010

Keywords

Comments

Hankel transform is the (1,8) Somos-4 sequence A097495(n+2).

Crossrefs

Cf. A001006.

Programs

  • Mathematica
    Table[Sum[Binomial[n - k, k] 2^k * Hypergeometric2F1[(1 - #)/2, -#/2, 2, 4] &[n - 2 k], {k, 0, Floor[n/2]}], {n, 0, 26}] (* Michael De Vlieger, Feb 02 2017, after Peter Luschny at A001006 *)

Formula

G.f.: (1-x-2*x^2-sqrt(1-2*x-7*x^2+4*x^3+4*x^4))/(2*x^2) = (1/(1-2*x))*M(x/(1-2*x^2)), M(x) the g.f. of A010006.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k) * 2^k * A001006(n-2k).
Conjecture: (n+2)*a(n) -(2*n+1)*a(n-1) +7*(1-n)*a(n-2) +2*(2*n-5)*a(n-3) +4*(n-4)*a(n-4)=0. - R. J. Mathar, Sep 30 2012
a(0) = a(1) = 1; a(n) = a(n-1) + 2 * a(n-2) + Sum_{k=0..n-2} a(k) * a(n-k-2). - Ilya Gutkovskiy, Nov 09 2021
a(n) ~ 17^(1/4) * (3 + sqrt(17))^(n+1) / (sqrt(Pi) * n^(3/2) * 2^(n+2)). - Vaclav Kotesovec, Nov 11 2021

A251571 G.f.: M(F(x)) is a power series in x consisting entirely of positive integer coefficients such that M(F(x) - x^k) has negative coefficients for k>0, where M(x) = 1 + x*M(x) + x*M(x)^2 is the g.f. of the Motzkin numbers A001006.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 39, 55, 79, 113, 160, 228, 322, 455, 641, 902, 1268, 1777, 2490, 3483, 4864, 6791, 9468, 13189, 18358, 25527, 35473, 49248, 68336, 94751, 131288, 181815, 251627, 348051, 481180, 664885, 918285, 1267663, 1749212, 2412635, 3326303, 4584236, 6315428, 8697260
Offset: 0

Views

Author

Paul D. Hanna, Jan 19 2015

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 13*x^7 +...
such that A(x) = M(F(x)),
where F(x) is the g.f. of A251570:
F(x) = x - x^3 - x^4 + x^5 - x^7 - x^8 + x^10 - x^11 - x^13 - x^14 - x^16 - x^17 - x^18 - x^20 - x^22 - x^26 - x^27 - x^28 - x^29 - x^32 - x^33 - x^35 - x^36 - x^39 - x^41 - x^43 - x^44 - x^45 - x^46 - x^47 - x^48 - x^50 +...
and M(x) is the g.f. of the Motzkin numbers:
M(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 51*x^6 + 127*x^7 + 323*x^8 + 835*x^9 + 2188*x^10 + 5798*x^11 + 15511*x^12 +...
		

Crossrefs

Programs

  • PARI
    /* Prints initial N+2 terms: */
    N=100;
    /* M(x) = 1 + x*M(x) + x^2*M(x)^2 is the g.f. of Motzkin numbers: */
    {M=1/x*serreverse(x/(1+x+x^2 +x*O(x^(2*N+10)))); M +O(x^21) }
    /* Print terms as you build vector A, then print a(n) at the end: */
    {A=[1, 0]; print1("1, 0, ");
    for(l=1, N, A=concat(A, -3);
    for(i=1, 4, A[#A]=A[#A]+1;
    V=Vec(subst(M, x, x*truncate(Ser(A)) +O(x^floor(2*#A+1)) ));
    if((sign(V[2*#A])+1)/2==1, print1(A[#A], ", "); break)); );
    Vec(subst(M,x,x*Ser(A)))}

A309201 a(n) is the smallest divisor of the Motzkin number A001006(n) not already in the sequence.

Original entry on oeis.org

1, 2, 4, 3, 7, 17, 127, 19, 5, 547, 13, 15511, 15, 6, 9, 284489, 57, 1089397, 12, 73, 11, 21, 35, 63, 119, 6417454619, 38, 107, 31, 1483, 497461, 4644523115569, 51, 10, 37, 953467954114363, 1601, 370537, 1063, 1301337253214147, 43, 18, 1951, 520497658389713341
Offset: 1

Views

Author

N. J. A. Sloane, Jul 25 2019

Keywords

Comments

Is this a permutation of the positive integers? Daniel Suteu's b-file suggests the answer is no, since powers of 2 >= 8 seem to be missing.
In fact Daniel Suteu points out that Eu and Liu (2008) prove that no Motzkin number is a multiple of 8.
Given any monotonically increasing sequence {b(n): n >= 1} of positive integers we can define a sequence {a(n): n >= 1} by setting a(n) to be smallest divisor of b(n) not already in the {a(n)} sequence. The triangular numbers A000217 produce A111273. A000027 is fixed under this transformation.

Crossrefs

Extensions

More terms from Daniel Suteu, Jul 25 2019

A338220 Numbers k such that the Motzkin number A001006(k) is divisible by 5.

Original entry on oeis.org

9, 13, 23, 34, 38, 59, 63, 84, 88, 99, 109, 113, 134, 138, 148, 159, 163, 184, 188, 209, 213, 224, 234, 238, 249, 259, 263, 273, 284, 288, 309, 313, 334, 338, 349, 359, 363, 373, 384, 388, 398, 409, 413, 434, 438, 459, 463, 474, 484, 488, 509, 513, 523, 534, 538
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2021

Keywords

Comments

The asymptotic density of this sequence is 1/10. It is a disjoint union of 4 sequences: numbers of the form (5*i + 1)*5^(2*j) - 2, (5*i + 2)*5^(2*j-1) - 1, (5*i + 3)*5^(2*j-1) - 2, and (5*i + 4)*5^(2*j) - 1, with i>=0 and j>=1, whose asymptotic densities are 1/120, 1/24, 1/24, and 1/120, respectively (Burns, 2016).

Examples

			9 is a term since A001006(9) = 835 = 5 * 167 is divisible by 5.
		

Crossrefs

Cf. A001006.
Similar sequences, indices of Motzkin numbers divisible by m: A081706 (m = 2), A089119 (m = 3).

Programs

  • Mathematica
    motz[0] = motz[1] = 1; motz[n_] := motz[n] = ((2*n + 1)*motz[n - 1] + 3*(n - 1)*motz[n - 2])/(n + 2);  Select[Range[0, 500], Divisible[motz[#], 5] &]
Previous Showing 41-50 of 590 results. Next