A153008
Catalan number A000108(n) minus Motzkin number A001006(n).
Original entry on oeis.org
0, 0, 0, 1, 5, 21, 81, 302, 1107, 4027, 14608, 52988, 192501, 701065, 2560806, 9384273, 34504203, 127288011, 471102318, 1749063906, 6513268401, 24323719461, 91081800417, 341929853235, 1286711419527, 4852902998951, 18341683253676
Offset: 0
-
A001006 := proc(n) (3/2)^(n+2)*add( 3^(-k)*A000108(k-1)*binomial(k,n+2-k), k=1..n+2) ; end:
A153008 := proc(n) A000108(n)-A001006(n) ;
end:
seq(A153008(n),n=0..30) ; # R. J. Mathar, Jan 22 2009
-
MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]];
a[n_] := CatalanNumber[n] - MotzkinNumber[n];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Oct 27 2021 *)
A153787
Largest proper divisor of Motzkin number A001006(n).
Original entry on oeis.org
1, 2, 3, 7, 17, 1, 19, 167, 1094, 2899, 1, 13945, 56817, 155286, 284489, 785593, 3268191, 9099642, 16950673, 47515853, 133587741, 376586805, 1064242599, 1291914643, 12834909238, 36503886401, 1944142787, 19152993059, 1144562017
Offset: 2
-
with(numtheory): M := proc (n) options operator, arrow: (sum((-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n), j = 0 .. floor((1/3)*n)))/(n+1) end proc: seq(divisors(M(i))[tau(M(i))-1], i = 2 .. 32); # Emeric Deutsch, Jan 18 2009
-
mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; lpd[n_] := n / FactorInteger[n][[1, 1]]; Table[lpd[mot[n]], {n, 2, 30}] (* Amiram Eldar, Nov 26 2019 *)
a(23)-a(27) and a(29)-a(30) corrected by
Amiram Eldar, Nov 26 2019
A154349
Sum of proper divisors minus the number of proper divisors of Motzkin number A001006(n).
Original entry on oeis.org
0, 0, 0, 1, 2, 8, 18, 0, 34, 170, 1643, 3603, 0, 25118, 139063, 474559, 284490, 984006, 6536387, 24265729, 18678366, 96214018, 277799290, 1282283434, 2077807072, 1899874612, 19252363859, 44221482383, 1967547352, 29743945396, 1265868622
Offset: 0
Cf.
A001006,
A001065,
A002808,
A032741,
A008578,
A152770,
A152981,
A152982,
A152983,
A152988,
A152990.
-
with(numtheory): M := proc (n) options operator, arrow: (sum((-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n), j = 0 .. floor((1/3)*n)))/(n+1) end proc: seq(sigma(M(n))-M(n)-tau(M(n))+1, n = 0 .. 30); # Emeric Deutsch, Jan 12 2009
-
mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; diff[n_] := DivisorSigma[1, n] - DivisorSigma[0, n] - n + 1; Table[diff[mot[n]], {n, 0, 30}] (* Amiram Eldar, Nov 26 2019 *)
A154558
Triangle read by rows: binomial(n-1,k-1)*A001006(k).
Original entry on oeis.org
1, 1, 2, 1, 4, 4, 1, 6, 12, 9, 1, 8, 24, 36, 21, 1, 10, 40, 90, 105, 51, 1, 12, 60, 180, 315, 306, 127, 1, 14, 84, 315, 735, 1071, 889, 323, 1, 16, 112, 504, 1470, 2856, 3556, 2584, 835, 1, 18, 144, 756, 2646, 6426, 10668, 11628, 7515, 2188
Offset: 1
First few rows of the triangle =
1;
1, 2;
1, 4, 4;
1, 6, 12, 9;
1, 8, 24, 36, 21;
1, 10, 40, 90, 105, 51;
1, 12, 60, 180, 315, 306, 127;
1, 14, 84, 315, 735, 1071, 889, 323;
1, 16, 112, 504, 1470, 2856, 3556, 2584, 835;
1, 18, 144, 756, 2646, 6426, 10668, 11628, 7515, 2188;
1, 20, 180, 1080, 4410, 12852, 26670, 38760, 37575, 21880, 5798;
...
Original entry on oeis.org
1, 2, 0, 3, 2, 0, 4, 6, 4, 0, 5, 12, 16, 9, 0, 6, 20, 40, 45, 21, 0, 7, 30, 80, 135, 126, 51, 0, 8, 42, 140, 315, 441, 357, 127, 0, 9, 56, 224, 630, 1176, 1428, 1016, 323, 0, 10, 72, 336, 1134, 2646, 4284, 4572, 2907, 835, 0
Offset: 1
First few rows of the triangle =
1;
2, 0;
3, 2, 0;
4, 6, 4, 0;
5, 12, 16, 9, 0;
6, 20, 40, 45, 21, 0;
7, 30, 80, 135, 126, 51, 0;
8, 42, 140, 315, 441, 357, 127, 0;
9, 56, 224, 630, 1176, 1428, 1016, 323, 0;
10, 72, 336, 1134, 2646, 4284, 4572, 2907, 835, 0;
11, 90, 480, 1890, 5292, 10710, 15240, 14535, 8350, 2188;
12, 110, 660, 2970, 9702, 23562, 41910, 53295, 45925, 24068, 5798;
...
A174169
A generalized Chebyshev transform of the Motzkin numbers A001006.
Original entry on oeis.org
1, 1, -1, -2, 0, 0, -3, 1, 8, 1, 1, 26, 7, -51, -3, 0, -264, -186, 348, -120, -285, 2697, 2871, -2304, 3393, 8029, -25795, -36872, 16108, -60010, -159683, 213795, 413712, -181857, 833779, 2669534, -1272977, -4030235, 3611168, -9145271, -39467427
Offset: 0
A174171
A generalized Chebyshev transform of the Motzkin numbers A001006.
Original entry on oeis.org
1, 1, 4, 8, 25, 65, 197, 571, 1753, 5351, 16746, 52626, 167547, 536559, 1732272, 5622960, 18357211, 60205319, 198323708, 655787680, 2176141555, 7244106347, 24185285341, 80960692691, 271685400443, 913784117809, 3079889039230
Offset: 0
- Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
- Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
-
Table[Sum[Binomial[n - k, k] 2^k * Hypergeometric2F1[(1 - #)/2, -#/2, 2, 4] &[n - 2 k], {k, 0, Floor[n/2]}], {n, 0, 26}] (* Michael De Vlieger, Feb 02 2017, after Peter Luschny at A001006 *)
A251571
G.f.: M(F(x)) is a power series in x consisting entirely of positive integer coefficients such that M(F(x) - x^k) has negative coefficients for k>0, where M(x) = 1 + x*M(x) + x*M(x)^2 is the g.f. of the Motzkin numbers A001006.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 39, 55, 79, 113, 160, 228, 322, 455, 641, 902, 1268, 1777, 2490, 3483, 4864, 6791, 9468, 13189, 18358, 25527, 35473, 49248, 68336, 94751, 131288, 181815, 251627, 348051, 481180, 664885, 918285, 1267663, 1749212, 2412635, 3326303, 4584236, 6315428, 8697260
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 13*x^7 +...
such that A(x) = M(F(x)),
where F(x) is the g.f. of A251570:
F(x) = x - x^3 - x^4 + x^5 - x^7 - x^8 + x^10 - x^11 - x^13 - x^14 - x^16 - x^17 - x^18 - x^20 - x^22 - x^26 - x^27 - x^28 - x^29 - x^32 - x^33 - x^35 - x^36 - x^39 - x^41 - x^43 - x^44 - x^45 - x^46 - x^47 - x^48 - x^50 +...
and M(x) is the g.f. of the Motzkin numbers:
M(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 51*x^6 + 127*x^7 + 323*x^8 + 835*x^9 + 2188*x^10 + 5798*x^11 + 15511*x^12 +...
-
/* Prints initial N+2 terms: */
N=100;
/* M(x) = 1 + x*M(x) + x^2*M(x)^2 is the g.f. of Motzkin numbers: */
{M=1/x*serreverse(x/(1+x+x^2 +x*O(x^(2*N+10)))); M +O(x^21) }
/* Print terms as you build vector A, then print a(n) at the end: */
{A=[1, 0]; print1("1, 0, ");
for(l=1, N, A=concat(A, -3);
for(i=1, 4, A[#A]=A[#A]+1;
V=Vec(subst(M, x, x*truncate(Ser(A)) +O(x^floor(2*#A+1)) ));
if((sign(V[2*#A])+1)/2==1, print1(A[#A], ", "); break)); );
Vec(subst(M,x,x*Ser(A)))}
A309201
a(n) is the smallest divisor of the Motzkin number A001006(n) not already in the sequence.
Original entry on oeis.org
1, 2, 4, 3, 7, 17, 127, 19, 5, 547, 13, 15511, 15, 6, 9, 284489, 57, 1089397, 12, 73, 11, 21, 35, 63, 119, 6417454619, 38, 107, 31, 1483, 497461, 4644523115569, 51, 10, 37, 953467954114363, 1601, 370537, 1063, 1301337253214147, 43, 18, 1951, 520497658389713341
Offset: 1
A338220
Numbers k such that the Motzkin number A001006(k) is divisible by 5.
Original entry on oeis.org
9, 13, 23, 34, 38, 59, 63, 84, 88, 99, 109, 113, 134, 138, 148, 159, 163, 184, 188, 209, 213, 224, 234, 238, 249, 259, 263, 273, 284, 288, 309, 313, 334, 338, 349, 359, 363, 373, 384, 388, 398, 409, 413, 434, 438, 459, 463, 474, 484, 488, 509, 513, 523, 534, 538
Offset: 1
9 is a term since A001006(9) = 835 = 5 * 167 is divisible by 5.
Similar sequences, indices of Motzkin numbers divisible by m:
A081706 (m = 2),
A089119 (m = 3).
-
motz[0] = motz[1] = 1; motz[n_] := motz[n] = ((2*n + 1)*motz[n - 1] + 3*(n - 1)*motz[n - 2])/(n + 2); Select[Range[0, 500], Divisible[motz[#], 5] &]
Comments