cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A165838 Totally multiplicative sequence with a(p) = 17.

Original entry on oeis.org

1, 17, 17, 289, 17, 289, 17, 4913, 289, 289, 17, 4913, 17, 289, 289, 83521, 17, 4913, 17, 4913, 289, 289, 17, 83521, 289, 289, 4913, 4913, 17, 4913, 17, 1419857, 289, 289, 289, 83521, 17, 289, 289, 83521, 17, 4913, 17, 4913, 4913, 289, 17, 1419857, 289, 4913
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Programs

Formula

a(n) = A001026(A001222(n)) = 17^bigomega(n) = 17^A001222(n).

A227881 Sum of digits of 17^n.

Original entry on oeis.org

1, 8, 19, 17, 19, 35, 37, 35, 55, 71, 55, 62, 64, 80, 91, 80, 109, 98, 91, 98, 82, 116, 136, 143, 109, 152, 163, 152, 145, 152, 172, 170, 172, 170, 208, 215, 199, 197, 226, 233, 217, 206, 271, 224, 244, 242, 253, 287, 244, 305, 271, 269, 298, 305, 325, 314
Offset: 0

Views

Author

Irene Sermon, Oct 25 2013

Keywords

Examples

			For n = 8, 17^8 = 6975757441 and the digit sum is 55.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[IntegerDigits[17^n]], {n, 0, 100}] (* T. D. Noe, Oct 28 2013 *)

Formula

a(n) = A007953(A001026(n)).

A038287 Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*9^j.

Original entry on oeis.org

1, 8, 9, 64, 144, 81, 512, 1728, 1944, 729, 4096, 18432, 31104, 23328, 6561, 32768, 184320, 414720, 466560, 262440, 59049, 262144, 1769472, 4976640, 7464960, 6298560, 2834352, 531441, 2097152, 16515072, 55738368, 104509440, 117573120, 79361856, 29760696, 4782969
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins as:
     1;
     8,     9;
    64,   144,    81;
   512,  1728,  1944,   729;
  4096, 18432, 31104, 23328, 6561;
  ...
		

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.

Crossrefs

Cf. A001018 (1st column), A001019 (diagonal), A001026 (row sums).

Programs

  • Mathematica
    T[i_,j_]:=Binomial[i,j]*8^(i-j)*9^j; Table[T[i,j],{i,0,7},{j,0,i}]//Flatten (* Stefano Spezia, Sep 05 2025 *)

Extensions

a(32)-a(35) from Stefano Spezia, Sep 05 2025
Previous Showing 31-33 of 33 results.