A141052
Number of runs or rising sequences of length 2 among all permutations of n.
Original entry on oeis.org
1, 4, 21, 130, 930, 7560, 68880, 695520, 7711200, 93139200, 1217462400, 17124307200, 257902444800, 4140968832000, 70614415872000, 1274546617344000, 24275666967552000, 486580401635328000, 10238462617743360000, 225651661258383360000, 5198503365971435520000
Offset: 2
a[3]=4 because of the 6 permutations of n=3, there are 4 ascending runs of length 2:
{1,3} in {1,3,2}
{1,3} in {2,1,3}
{2,3} in {2,3,1}
{1,2} in {3,1,2}
a[3]=4 because of the 6 permutations of n=3, there are 4 rising sequences of length 2:
{1,2} in {1,3,2}
{2,3} in {2,1,3}
{2,3} in {2,3,1}
{1,2} in {3,1,2}
A196080
Numerators of the sum of the n-th partial sums of the expansions of e and 1/e.
Original entry on oeis.org
2, 2, 3, 3, 37, 37, 1111, 1111, 6913, 6913, 799933, 799933, 739138093, 739138093, 44841044309, 44841044309, 32285551902481, 32285551902481, 9879378882159187, 9879378882159187, 1251387991740163687
Offset: 0
a(0)=1+1, a(1)=2+0, a(2)=(5+1)/2, a(3)=(8+1)/3.
-
a[n_] := (E*Gamma[n+1, 1] + (1/E)*Gamma[n+1, -1])/n! // FullSimplify // Numerator; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 02 2012 *)
A350227
Triangular array read by rows. T(n,k) is the number of partial permutations on [n] with exactly k connected components, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 2, 0, 3, 4, 0, 8, 18, 8, 0, 30, 91, 72, 16, 0, 144, 540, 590, 240, 32, 0, 840, 3718, 5085, 2900, 720, 64, 0, 5760, 29232, 47516, 34230, 12040, 2016, 128, 0, 45360, 258732, 484092, 416857, 186480, 44576, 5376, 256, 0, 403200, 2547360, 5368184, 5340888, 2869314, 876960, 151872, 13824, 512
Offset: 0
Triangle begins:
1;
0, 2;
0, 3, 4;
0, 8, 18, 8;
0, 30, 91, 72, 16;
0, 144, 540, 590, 240, 32;
...
-
nn = 9; Table[Take[(Range[0, nn]! CoefficientList[Series[1/(1 - x)^y Exp[y x/(1 - x)], {x, 0, nn}], {x, y}])[[i, All]], i], {i, 1, nn + 1}] // Grid
A385577
Array read by ascending antidiagonals: A(n,m) = n*Pochhammer(n+1,m+1)/(m+2).
Original entry on oeis.org
0, 1, 0, 3, 2, 0, 6, 8, 6, 0, 10, 20, 30, 24, 0, 15, 40, 90, 144, 120, 0, 21, 70, 210, 504, 840, 720, 0, 28, 112, 420, 1344, 3360, 5760, 5040, 0, 36, 168, 756, 3024, 10080, 25920, 45360, 40320, 0, 45, 240, 1260, 6048, 25200, 86400, 226800, 403200, 362880, 0
Offset: 0
Array begins as:
0, 0, 0, 0, 0, 0, 0, ...
1, 2, 6, 24, 120, 720, 5040, ...
3, 8, 30, 144, 840, 5760, 45360, ...
6, 20, 90, 504, 3360, 25920, 226800, ...
10, 40, 210, 1344, 10080, 86400, 831600, ...
...
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 20.
-
A[n_,m_]:=n*Pochhammer[n+1,m+1]/(m+2); Table[A[n-m,m],{n,0,9},{m,0,n}]//Flatten
Comments