cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A057868 Denominator of "modified Bernoulli number" b(2n) = Bernoulli(2*n)/(4*n*(2*n)!).

Original entry on oeis.org

48, 5760, 362880, 19353600, 958003200, 31384184832000, 2092278988800, 341459930972160000, 183927391818153984000, 32114306507931648000000, 620448401733239439360000, 81303558563123696133734400000, 9678995067038535254016000000, 2122022878497528469090467840000000
Offset: 1

Views

Author

Keywords

Comments

Note that Weisstein gives the formula b(n) = B(n)/(2*n*n!), and a(n) is the denominator of b(2*n). Numerators seem to be A141590 (not A001067 or A046968 or A255505). - Andrey Zabolotskiy, Dec 03 2022

Examples

			The sequence of modified Bernoulli numbers begins 1/48, -1/5760, 1/362880, -1/19353600, 1/958003200, -691/31384184832000, ...
		

Crossrefs

Numerators seem to be A141590.
Cf. A001067.

Programs

  • Maple
    seq(denom(bernoulli(2*n)/((4*n)*(2*n)!)), n = 1..14); # Peter Luschny, Dec 03 2022
  • Mathematica
    a[n_] := Denominator[ BernoulliB[2n] / (8n^2*(2n-1)!)];
    Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Jun 07 2012 *)

Extensions

Name edited by Andrey Zabolotskiy, Dec 03 2022

A085092 Numerators of constant term in a formal analog of Bernoulli numbers.

Original entry on oeis.org

1, 1, 1, 1, -432000, 1, -3456000, -9504000, -209520000, -389664000, -5952960000, -289595177265600
Offset: 2

Views

Author

N. J. A. Sloane, Aug 11 2003

Keywords

Examples

			1, 1, 1, 1, -432000/691, 1, -3456000/3617, -9504000/43867, ...
		

Crossrefs

For denominators see A001067.

A090177 Numbers n such that numerator(Bernoulli(2*n)/(2*n)) is different from numerator(Bernoulli(2*n)/(2*n*(2*n+1))).

Original entry on oeis.org

610, 1276, 1287, 1327, 1506, 1942, 1976, 2608, 2971, 3038, 3274, 3484, 3940, 4187, 4491, 4606, 4749, 4945, 5272, 5938, 6398, 6460, 6478, 6540, 6604, 6819, 7270, 7936, 8171, 8534, 8602, 8609, 8713, 9268, 9759, 9882, 9902, 9934, 10021
Offset: 1

Views

Author

mohammed bouayoun (bouyao(AT)wanadoo.fr), Feb 04 2004

Keywords

Comments

Coincides with A090495(n) + A090496(n) - 1, except for order of terms.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Numerator[ BernoulliB[2n] / (2n)] != Numerator[ BernoulliB[2n] / (2n(2n + 1))], Print[n]], {n, 1, 10030}]

Extensions

a(6)-a(39) from Robert G. Wilson v, Feb 09 2004

A090179 Ratio of numerator(Bernoulli(2*n)/(2*n)) to numerator(Bernoulli(2*n)/(2*n*(2*n+1))) for n's for which they are different.

Original entry on oeis.org

37, 37, 103, 59, 131, 37, 67, 37, 283, 59, 37, 101, 37, 67, 691, 37, 59, 157, 37, 37, 67, 59, 617, 103, 37, 593, 37, 37, 59, 101, 37, 67, 157, 37, 149, 59, 233, 37, 131
Offset: 1

Views

Author

mohammed bouayoun (bouyao(AT)wanadoo.fr), Feb 04 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ If[ r = Numerator[ BernoulliB[2n]/(2n)] / Numerator[ BernoulliB[2n]/(2n(2n + 1))]; r != 1, Print[r]], {n, 1, 10030}]

Extensions

a(6)-a(39) from Robert G. Wilson v, Feb 09 2004

A090790 Numbers r arising in A090791.

Original entry on oeis.org

30, 42, 56, 66, 22, 20, 128, 60, 82, 162, 98, 82, 18
Offset: 1

Views

Author

Cino Hilliard, Feb 16 2004

Keywords

Comments

These values of r correspond to the first 13 irregular primes produced by a/b.

Examples

			Given a, b as defined above and p=37, r=30, 52 = pk+r/2 = 37*1 + 30/2 is the smallest number that for a<>b a/b = 37.
		

Crossrefs

Programs

  • PARI
    bern3(m,r) = { for(i=m,m, p=irprime(i); /* use the Somos script below to get irregular prime */ for(k=1,p, if(r%2,n=p*k+(p+r)/2,n=p*k+r/2); n2=n+n; a = numerator(bernfrac(n2)/(n2));
    b = numerator(a/(n2-r)); v=a/b; if(a <> b && v==p,print(k","n","v);break) ) ) } /* A001067 */
    
  • PARI
    irprime(n) = { my(p); if(n<1, 0, p=irprime(n-1) + (n==1); while(p = nextprime(p+2), forstep(i=2, p-3, 2, if( numerator(bernfrac(i))%p == 0, break(2)))); p) }; /* compute irregular primes irprime from - Michael Somos, Feb 04 2004 */

Formula

Given a = numerator(Bernoulli(2*n)/(2*n)) and b = numerator(a/(2*n-r)) for integer r positive or negative, then n>0 n = p*k+(p+r)/2 if r is odd and n = p*k+r/2 if r is even where k = 1, 2.. For every irregular prime p there is an r such that n is minimum.

A090791 Minimal numbers n such that numerator(Bernoulli(2*n)/(2*n)) is different from numerator(Bernoulli(2*n)/(2*n*(2*n-r))) for some integer r.

Original entry on oeis.org

52, 80, 95, 134, 114, 141, 213, 187, 274, 338, 312, 312, 292
Offset: 1

Views

Author

Cino Hilliard, Feb 16 2004

Keywords

Comments

These values of n correspond to the first 13 irregular primes produced by a/b.

Examples

			Given a,b as defined above and p=37,r=30, n=pk+r/2 = 37*k + 30/2 = 37k+15 = 52 = the smallest number that for a<>b a/b = 37.
		

Crossrefs

Programs

  • PARI
    bern3(m,r) = { for(i=m,m, p=irprime(i); /* use the Somos script below to get irregular prime */ for(k=1,p, if(r%2,n=p*k+(p+r)/2,n=p*k+r/2); n2=n+n; a = numerator(bernfrac(n2)/(n2));
    b = numerator(a/(n2-r)); v=a/b; if(a <> b && v==p,print(k","n","v);break) ) ) } /* A001067 */
    
  • PARI
    irprime(n) = { my(p); if(n<1, 0, p = irprime(n-1) + (n==1); while(p = nextprime(p+2), forstep(i=2, p-3, 2, if( numerator(bernfrac(i))%p == 0, break(2)))); p) };  /* compute irregular primes irprime from - Michael Somos, Feb 04 2004 */

Formula

Given a = numerator(Bernoulli(2*n)/(2*n)) and b = numerator(a/(2*n-r)) for integer r positive or negative, then n>0 n = p*k+(p+r)/2 if r is odd and n = p*k+r/2 if r is even where k = 1, 2.. For every irregular prime p there is an r such that n is minimum.

A090798 Irregular primes in the ratio numerator(Bernoulli(2*n)/(2*n)) / numerator(Bernoulli(2*n)/(2*n*(2*n-r))) when these numerators are different and n is a minimum for some integer r. Duplication indicates irregularity index > 1.

Original entry on oeis.org

37, 59, 67, 101, 103, 131, 149, 157, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 353, 379, 379, 389, 401, 409, 421, 433, 461, 463, 467, 467, 491, 491, 491, 523, 541, 547, 547, 557, 577, 587, 587, 593, 607, 613, 617, 617, 617, 619, 631, 631, 647
Offset: 1

Views

Author

Cino Hilliard, Feb 16 2004

Keywords

Comments

Only even values of r need to be tested.
See Table A.3, "Calculated irregular pairs of order 10 of primes below 1000," in B. C. Kellner.

Crossrefs

Programs

  • Mathematica
    f[p_] := Block[{c = 0, k = 1}, While[ 2k <= p - 3, If[ Mod[ Numerator@ BernoulliB[ 2k], p] == 0, c++]; k++]; c]; p = 5; lst = {}; While[p < 1001, AppendTo[lst, Table[p, {f@ p}]]; p = NextPrime@ p]; Flatten@ lst
  • PARI
    \ prestore some ireg primes in iprime[] bernmin(m) = { for(x=1,m, p=iprime[x]; forstep(r=2,p,2, n=r/2+p; n2=n+n; a = numerator(bernfrac(n2)/(n2)); \ A001067 b = numerator(a/(n2-r)); \ if(a <> b,print(r","n","a/b)) if(a <> b,print1(a/b",")) ) ) }

Formula

Given a = numerator(Bernoulli(2*n)/(2*n)) and b = numerator(a/(2*n-r)) for integer r positive or negative, then n>0 n = p + r/2 For every irregular prime p there is an r such that n is minimum.

A281246 Least positive odd number m such that numerator of zeta(-m) are divisible by A000928(n).

Original entry on oeis.org

31, 43, 57, 67, 23, 21, 129, 61, 83, 163, 99, 83, 19, 155, 87, 291, 279, 185, 99, 199, 381, 125, 239, 365, 195, 129, 93, 291, 399, 85, 269, 221, 51, 89, 21, 591, 521, 19, 427, 79, 235, 47, 223, 407, 627, 31, 11, 377, 289, 513, 259, 731, 219, 329, 543, 743, 101
Offset: 1

Views

Author

Seiichi Manyama, Jan 18 2017

Keywords

Examples

			zeta(-11) = 691/32760 and 691 are divisible by A000928(47). So a(47) = 11.
		

Crossrefs

A090793 Minimal numbers n such that numerator(Bernoulli(2*n)/(2*n)) is different from numerator(Bernoulli(2*n)/(2*n*(2*n-r))) for some integer r and the first m irregular primes including irregularity index > 1.

Original entry on oeis.org

52, 80, 95, 134, 114, 141, 213, 187, 211, 274, 338, 312, 312, 292, 370, 350, 456, 486, 445, 502, 428, 465, 488, 591, 471, 540, 615, 558, 527, 513, 563, 636, 658, 659, 722, 583, 681, 789, 667, 602, 631, 632, 603, 902, 873, 626, 703, 785, 832, 670, 743, 764
Offset: 1

Views

Author

Cino Hilliard, Feb 16 2004

Keywords

Comments

Only even values of r are tested.

Crossrefs

Programs

  • PARI
    \ prestore some ireg primes in iprime[] bernmin(m) = { for(x=1,m, p=iprime[x]; forstep(r=2,p,2, n=r/2+p; n2=n+n; a = numerator(bernfrac(n2)/(n2)); \ A001067 b = numerator(a/(n2-r)); \ if(a <> b,print(r","n","a/b)) if(a <> b,print1(n",")) ) ) }

Formula

Given a = numerator(Bernoulli(2*n)/(2*n)) and b = numerator(a/(2*n-r)) for integer r positive or negative, then n>0 n = p + r/2 For every irregular prime p there is an r such that n is minimum.

A090800 r when numerator(Bernoulli(2*n)/(2*n)) and numerator(Bernoulli(2*n)/(2*n*(2*n-r))) are different and n is minimum for some integer r for the first i irregular primes. These include entries when the irregularity index > 1.

Original entry on oeis.org

30, 42, 56, 66, 22, 20, 128, 60, 108, 82, 162, 98, 82, 18, 154, 86, 290, 278, 184, 298, 98, 172, 198, 380, 124, 238, 364, 194, 128, 92, 192, 290, 334, 336, 398, 84, 268, 484, 220, 50, 88, 90, 20, 590, 520, 18, 172, 336, 426, 78, 224, 234, 240, 552, 46, 222, 406, 500
Offset: 2

Views

Author

Cino Hilliard, Feb 16 2004

Keywords

Comments

This is a generalization of the concept in A090495 and A090496. One can change the code below from p = iprime[x] to p = prime(x) and see that data for only irregular primes is generated.

Crossrefs

Programs

  • PARI
    \ prestore some ireg primes in iprime[] or use slower PARI BIF prime() bernmin(m) = { for(x=1,m, p=iprime[x]; forstep(r=2,p,2, n=r/2+p; n2=n+n; a = numerator(bernfrac(n2)/(n2)); \ A001067 b = numerator(a/(n2-r)); \ if(a <> b,print(r","n","a/b)) if(a <> b,print1(r",")) ) ) }

Formula

Given a = numerator(Bernoulli(2*n)/(2*n)) and b = numerator(a/(2*n-r)) for integer r positive or negative, then n>0 n = p + r/2. For every irregular prime p there is an r such that n is minimum.
Previous Showing 31-40 of 40 results.