cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A348070 Triangular array read by rows: T(n,k) is the number of undirected 2-regular labeled graphs whose largest connected component has exactly k nodes; n >= 1, 1 <= k <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 12, 0, 0, 10, 0, 0, 60, 0, 0, 0, 105, 0, 0, 360, 0, 0, 0, 315, 672, 0, 0, 2520, 0, 0, 280, 0, 4536, 5040, 0, 0, 20160, 0, 0, 0, 6300, 18144, 37800, 43200, 0, 0, 181440, 0, 0, 0, 51975, 55440, 332640, 356400, 415800, 0, 0, 1814400
Offset: 1

Views

Author

Steven Finch, Sep 27 2021

Keywords

Comments

For the statistic "length of the smallest component", see A348071.

Examples

			Triangle begins:
  0;
  0,  0;
  0,  0,   1;
  0,  0,   0,   3;
  0,  0,   0,   0,   12;
  0,  0,  10,   0,    0,   60;
  0,  0,   0, 105,    0,    0,  360;
  0,  0,   0, 315,  672,    0,    0, 2520;
  0,  0, 280,   0, 4536, 5040,    0,    0, 20160;
...
		

Crossrefs

Row sums give A001205, n >= 1.
Right border gives A001710.
Columns 1 and 2 each give A000004.
Cf. A348071.

Formula

T(n,n) = A001710(n-1) for n >= 2.

A348071 Triangular array read by rows: T(n,k) is the number of undirected 2-regular labeled graphs whose smallest connected component has exactly k nodes; n >= 1, 1 <= k <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 12, 0, 0, 10, 0, 0, 60, 0, 0, 105, 0, 0, 0, 360, 0, 0, 672, 315, 0, 0, 0, 2520, 0, 0, 5320, 4536, 0, 0, 0, 0, 20160, 0, 0, 49500, 37800, 18144, 0, 0, 0, 0, 181440, 0, 0, 523215, 356400, 332640, 0, 0, 0, 0, 0, 1814400
Offset: 1

Views

Author

Steven Finch, Sep 27 2021

Keywords

Comments

For the statistic "length of the largest component", see A348070.

Examples

			Triangle begins:
  0;
  0,  0;
  0,  0,    1;
  0,  0,    0,    3;
  0,  0,    0,    0,  12;
  0,  0,   10,    0,   0,  60;
  0,  0,  105,    0,   0,   0,  360;
  0,  0,  672,  315,   0,   0,    0, 2520;
  0,  0, 5320, 4536,   0,   0,    0,    0, 20160;
...
		

Crossrefs

Row sums give A001205, n >= 1.
Right border gives A001710.
Columns 1 and 2 each give A000004.
Cf. A348070.

Formula

T(n,n) = A001710(n-1) for n >= 2.

A382134 Number of completely asymmetric matchings (not containing centered or coupled arcs) of [2n].

Original entry on oeis.org

1, 0, 0, 8, 48, 384, 4480, 59520, 897792, 15368192, 293769216, 6198589440, 143130972160, 3590253477888, 97214510235648, 2826205634330624, 87801981951344640, 2902989352269250560, 101776549707306237952, 3771425415371470405632, 147285455218020210180096
Offset: 0

Views

Author

R. J. Mathar, Mar 17 2025

Keywords

Crossrefs

Programs

  • Maple
    g:= exp(-x-x^2)/sqrt(1-2*x) ;
    seq( coeftayl(g,x=0,n)*n!,n=0..10) ;

Formula

E.g.f: exp(-x-x^2)/sqrt(1-2*x).
a(n) = 2^n * A001205(n).
D-finite with recurrence a(n) +2*(-n+1)*a(n-1) -4*(n-1)*(n-2)*a(n-3)=0.

A109542 a(n) = number of labeled 3-regular (trivalent) multi-graphs without self-loops on 2n vertices with a maximum of 2 edges between any pair of nodes. Also a(n) = number of labeled symmetric 2n X 2n matrices with {0,1,2}-entries with row sum equal to 3 for each row and trace 0.

Original entry on oeis.org

0, 7, 640, 170555, 94949400, 95830621425, 159062872168200, 404720953797785625
Offset: 1

Views

Author

Jeremy Gardiner, Aug 29 2005

Keywords

Examples

			a(2)=7 because for 2*n=4 nodes there are 7 possible labeled graphs whose adjacency matrices are as follows:
0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0;
0 1 2 0
1 0 0 2
2 0 0 1
0 2 1 0;
0 2 0 1
2 0 1 0
0 1 0 2
1 0 2 0;
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0;
0 0 2 1
0 0 1 2
2 1 0 0
1 2 0 0;
0 1 0 2
1 0 2 0
0 2 0 1
2 0 1 0;
0 0 1 2
0 0 2 1
1 2 0 0
2 1 0 0.
		

Crossrefs

Extensions

a(5)-a(8) from Max Alekseyev, Aug 30 2005

A217763 Triangular array read by rows: T(n,k) is the number of simple labeled graphs on n nodes with unicyclic components having exactly k nodes with degree 1; n>=3, 0<=k<=n-3.

Original entry on oeis.org

1, 3, 12, 12, 90, 120, 70, 600, 1800, 1200, 465, 4725, 19530, 31500, 12600, 3507, 42168, 211680, 529200, 529200, 141120, 30016, 414288, 2451456, 7902720, 13124160, 8890560, 1693440, 286884, 4460760, 30413880, 117573120, 266716800, 312439680, 152409600, 21772800
Offset: 3

Views

Author

Geoffrey Critzer, Mar 23 2013

Keywords

Comments

Column k=0 is A001205.
Row sums are A137916.

Examples

			  ....o-o..........o-o......
  ....| |..........|\ ......
  ....o-o..........o-o......
  T(4,0)=3 because the graph on the left has 4 nodes and 0 nodes with degree 1. It has 3 labelings.
  T(4,1)=12 because the graph on the right has 4 nodes and 1 node with degree 1.  It has 12 labelings.
1,
3,     12,
12,    90,     120,
70,    600,    1800,    1200,
465,   4725,   19530,   31500,   12600,
3507,  42168,  211680,  529200,  529200,   141120,
30016, 414288, 2451456, 7902720, 13124160, 8890560, 1693440.
		

Programs

  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];t=Sum[Sum[n!/k! StirlingS2[n-1,n-k]y^k x^n/n!,{k,1,n}],{n,0,nn}];Map[Reverse,Map[f,Drop[Range[0,nn]!CoefficientList[Series[ Exp[Log[1/(1-t)]/2-t/2-t^2/4],{x,0,nn}],{x,y}],3]]]//Grid

Formula

exp(A(B(x,y)), where A(x) is e.g.f. for A137916 and B(x,y) is e.g.f. for A055302, gives T(n,n-k) (offset).
Previous Showing 21-25 of 25 results.