cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 78 results. Next

A214151 Numbers k from the set == 5 (mod 6) with the property that 3^((3*k-1)/2) == 3 (mod k) and 2^((k-1)/2) == (k-1) (mod k).

Original entry on oeis.org

11, 59, 83, 107, 131, 179, 227, 251, 347, 419, 443, 467, 491, 563, 587, 659, 683, 827, 947, 971, 1019, 1091, 1163, 1187, 1259, 1283, 1307, 1427, 1451, 1499, 1523, 1571, 1619, 1667, 1787, 1811, 1907, 1931, 1979, 2003, 2027, 2099, 2243, 2267
Offset: 1

Views

Author

Alzhekeyev Ascar M, Jul 05 2012

Keywords

Comments

All composites in this sequence are 2-pseudoprimes, see A001567, and strong pseudoprimes to base 2, A001262.
The subsequence of these composites begins: 1441091, 3587553971, 4528686251, 23260036451, 47535120323, 61070250323, 90474845819, 143193768587, 162016315907, 173868807611, 180998962187, 238364070323, 285370693931, 298577370323, ...
Perhaps this sequence contains all the terms of the sequence A107007 or A168539.

Crossrefs

Subsequence of A176997.

Programs

  • Maple
    isA214151 := proc(n)
        if (n mod 6 = 5) and modp(2 &^ ((n-1)/2),n)  = n-1 and modp(3 &^ ((3*n-1)/2),n)  = 3 then
            true;
        else
            false;
        end if;
    end proc:
    for n from 5 by 6 do
        if isA214151(n) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Jul 20 2012
  • Mathematica
    Select[Range[5,2500,6],PowerMod[3,(3#-1)/2,#]==3&&PowerMod[2,(#-1)/2,#] == #-1&] (* Harvey P. Dale, Mar 14 2022 *)
  • PARI
    for(n=0, 200, b=6*n+5; if(Mod(3, b)^((3*b-1)/2)==3, if(Mod(2, b)^((b-1)/2)==b-1 , print1(b, ", "))));

A230810 Smallest of 3 consecutive odd numbers that are primes or strong pseudoprime to base 2.

Original entry on oeis.org

3, 3465253618399, 374166120095639, 12959269432331237, 44202753561285409, 1640293473202755797, 1640293473202755799, 10623546148468360249
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 30 2013

Keywords

Comments

Since a(7) = a(6) + 2, the number a(6) = 1640293473202755797 actually starts a sequence of four consecutive odd numbers which are prime or strong pseudoprimes to base 2. - M. F. Hasler, Dec 08 2016

Examples

			3465253618399 is in sequence because 3465253618399, 3465253618401, 3465253618403 is a set of 3 consecutive odd number where 3465253618401 is strong pseudoprime base 2 and others are prime.
		

Crossrefs

Extensions

Edited by M. F. Hasler, Dec 08 2016

A360184 Square array A(n, k) read by antidiagonals downwards: smallest base-n strong Fermat pseudoprime with k distinct prime factors for k, n >= 2.

Original entry on oeis.org

2047, 15841, 703, 800605, 8911, 341, 293609485, 152551, 4371, 781, 10761055201, 41341321, 129921, 24211, 217, 5478598723585, 12283706701, 9224391, 4382191, 29341, 325, 713808066913201, 1064404682551, 2592053871, 381347461, 3405961, 58825, 65, 90614118359482705
Offset: 2

Views

Author

Daniel Suteu, Mar 04 2023

Keywords

Comments

The array A(n, k) starts as follows:
k = 2 3 4 5 6
n = 2: 2047 15841 800605 293609485 10761055201
n = 3: 703 8911 152551 41341321 12283706701
n = 4: 341 4371 129921 9224391 2592053871
n = 5: 781 24211 4382191 381347461 9075517561
n = 6: 217 29341 3405961 557795161 333515107081

Crossrefs

Cf. A001262, A180065 (row n=2), A271873.

Programs

  • PARI
    strong_check(p, base, e, r) = my(tv=valuation(p-1, 2)); tv > e && Mod(base, p)^((p-1)>>(tv-e)) == r;
    strong_fermat_psp(A, B, k, base) = A=max(A, vecprod(primes(k))); (f(m, l, lo, k, e, r) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, forstep(p=lift(1/Mod(m, l)), hi, l, if(isprimepower(p) && gcd(m*base, p) == 1 && strong_check(p, base, e, r), my(n=m*p); if(n >= A && (n-1) % znorder(Mod(base, p)) == 0, listput(list, n)))), forprime(p=lo, hi, base%p == 0 && next; strong_check(p, base, e, r) || next; my(z=znorder(Mod(base, p))); gcd(m,z) == 1 || next; my(q=p, v=m*p); while(v <= B, list=concat(list, f(v, lcm(l, z), p+1, k-1, e, r)); q *= p; Mod(base, q)^z == 1 || break; v *= p))); list); my(res=f(1, 1, 2, k, 0, 1)); for(v=0, logint(B, 2), res=concat(res, f(1, 1, 2, k, v, -1))); vecsort(Set(res));
    T(n, k) = if(n < 2, return()); my(x=vecprod(primes(k)), y=2*x); while(1, my(v=strong_fermat_psp(x, y, k, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x);
    print_table(n, k) = for(x=2, n, for(y=2, k, print1(T(x, y), ", ")); print(""));
    for(k=2, 9, for(n=2, k, print1(T(n, k-n+2)", ")));

A020240 Strong pseudoprimes to base 14.

Original entry on oeis.org

15, 841, 2743, 3277, 5713, 6541, 7171, 9073, 18721, 21667, 22261, 23521, 38221, 38417, 40501, 41371, 49471, 58255, 68401, 71969, 79003, 88381, 91681, 95033, 96049, 97469, 110309, 115417, 119341, 124609, 134413, 141373, 165677, 211951, 226801
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001262 (base 2), A020233 (base 7)

A020250 Strong pseudoprimes to base 24.

Original entry on oeis.org

25, 175, 553, 949, 1541, 1975, 2701, 4537, 6931, 7501, 13825, 21349, 25273, 25477, 29341, 38323, 42121, 42127, 47617, 49141, 52417, 63701, 80137, 83333, 85609, 94753, 105121, 113527, 128143, 144841, 167869, 169027, 179521, 181351, 197209, 201373
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    strongPseudoprimeQ[b_, n_] := Module[{rems = Table[PowerMod[b, (n - 1)/2^expo, n], {expo, 0, IntegerExponent[n - 1, 2]}]}, (rems[[-1]] == 1 || MemberQ[rems, n - 1]) && PowerMod[b, n - 1, n] == 1]; max = 5000; Select[Complement[Range[2, max], Prime[Range[PrimePi[max]]]], strongPseudoprimeQ[24, #] &] (* Alonso del Arte, Aug 03 2018 *)
  • PARI
    is(n, a=24)= (bittest(n, 0) && !isprime(n) && n>8) || return; my(s=valuation(n-1, 2)); if(1==a=Mod(a, n)^(n>>s), return(1)); while(a!=-1 && s--, a=a^2); a==-1 \\ Felix Fröhlich, Aug 03 2018, adapted from code by M. F. Hasler in A001262

A020261 Strong pseudoprimes to base 35.

Original entry on oeis.org

9, 1261, 2701, 2871, 5083, 11041, 13051, 15051, 16441, 16589, 22681, 23959, 31201, 31621, 38081, 39091, 44749, 49601, 49771, 50737, 54223, 74023, 79381, 100081, 113527, 117157, 151061, 151313, 154201, 160147, 169801, 203841, 282133, 304057
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    for n from 2 do
        if isStrongPsp(n,35) then # calls code in A001262 and A007814
            print(n) ;
        end if;
    end do: # R. J. Mathar, Jul 30 2024

A020287 Strong pseudoprimes to base 61.

Original entry on oeis.org

15, 217, 341, 1261, 2701, 3661, 6541, 6697, 7613, 13213, 16213, 22177, 23653, 23959, 31417, 50117, 61777, 63139, 67721, 76301, 77421, 79381, 80041, 102341, 113491, 115231, 145993, 160147, 163073, 164737, 170941, 178709, 197209, 210817, 249631
Offset: 1

Views

Author

Keywords

Comments

The smallest number which is a strong pseudoprime to the bases 2 (A001262), 7 (A020233) and also 61 (here) is 4759123141 [Jaeschke]. - R. J. Mathar, Apr 05 2011

A112450 Strong pseudoprimes (base-2) equal to product of 3 primes not necessarily distinct.

Original entry on oeis.org

15841, 29341, 52633, 74665, 252601, 314821, 476971, 635401, 1004653, 1023121, 1907851, 1909001, 2419385, 2953711, 3581761, 4335241, 4682833, 5049001, 5444489, 5599765, 5681809, 9069229, 13421773, 15247621, 15510041, 15603391, 17509501, 26254801, 26758057, 27966709
Offset: 1

Views

Author

Shyam Sunder Gupta, Dec 12 2005

Keywords

Comments

The term a(11)=1907851 is also a strong pseudoprime to base 5, cf. A020231. M. F. Hasler, Aug 16 2012

Examples

			a(1) = 15841 = 7*31*73.
		

Crossrefs

Intersection of A014612 and A001262.

Extensions

More terms from Amiram Eldar, Nov 10 2019

A112451 Strong pseudoprimes (base-2) equal to product of 4 primes not necessarily distinct.

Original entry on oeis.org

800605, 4502485, 5310721, 7177105, 9995671, 10655905, 11473885, 13216141, 15698431, 21417991, 22564081, 29878381, 36338653, 38624041, 43397551, 45485881, 45769645, 48369727, 51340807, 57561085, 77576401, 81445585, 86067241, 90626185, 104852881, 112792519, 115007581
Offset: 1

Views

Author

Shyam Sunder Gupta, Dec 12 2005

Keywords

Examples

			a(1) = 800605 = 5*13*109*113.
		

Crossrefs

Intersection of A014613 and A001262.

Extensions

More terms from Amiram Eldar, Nov 10 2019

A112452 Strong pseudoprimes (base-2) equal to product of 5 primes not necessarily distinct.

Original entry on oeis.org

293609485, 440707345, 606057985, 831807145, 958970545, 1816572745, 2395916965, 2708826841, 2907393385, 3246238801, 4340265931, 4953963781, 5949820045, 6845182669, 9580649065, 10121349421, 11360308765, 11892462985, 13560708421, 16034618701, 16720656121, 16765381165
Offset: 1

Views

Author

Shyam Sunder Gupta, Dec 12 2005

Keywords

Examples

			a(1) = 293609485 = 5*13*29*109*1429.
		

Crossrefs

Intersection of A014614 and A001262.

Extensions

More terms from Amiram Eldar, Nov 10 2019
Previous Showing 51-60 of 78 results. Next