cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 78 results. Next

A112453 Strong pseudoprimes (base-2) equal to product of 6 primes not necessarily distinct.

Original entry on oeis.org

10761055201, 26244332101, 49430153305, 53125756201, 247173316831, 276228879031, 360187750105, 516311394481, 558417883465, 605526139765, 765771364801, 823307740165, 877094650081, 904455227845, 1113985668601, 1237898798461, 1324214598565, 1353668162185, 1370368908805
Offset: 1

Views

Author

Shyam Sunder Gupta, Dec 12 2005

Keywords

Examples

			a(1) = 10761055201 = 13*29*41*61*101*113.
		

Crossrefs

Intersection of A046306 and A001262.

Extensions

More terms from Amiram Eldar, Nov 10 2019

A113639 Pandigital strong pseudoprimes (base-2).

Original entry on oeis.org

13069482857, 16974853201, 18260734519, 23759084161, 24785139601, 25089467413, 29384567041, 38706945421, 41390257861, 49065821737, 65829130417, 67903858241, 76953210841, 98642074513, 100695314287, 106237698451, 106751489293, 110586343297, 113646829507, 116548907329
Offset: 1

Views

Author

Shyam Sunder Gupta, Jan 15 2006

Keywords

Examples

			a(1) = 13069482857 is a term because 13069482857 is a strong pseudoprime (base-2) and also contains all digits from 0 to 9 so pandigital also.
		

Crossrefs

Intersection of A171102 and A001262.

Extensions

More terms from Amiram Eldar, Nov 10 2019

A113640 Zeroless pandigital strong pseudoprimes (base-2).

Original entry on oeis.org

6913548721, 11396574289, 13842496537, 14872531669, 16952474813, 16963825147, 16974152381, 18632427859, 27569184173, 28239546721, 47569352881, 54689213377, 54987116329, 68719214593, 79633524181, 93541462873, 95126134837, 118214685793, 121899457633, 123572846953
Offset: 1

Views

Author

Shyam Sunder Gupta, Jan 15 2006

Keywords

Examples

			a(1) = 6913548721 is a term because 6913548721 is a strong pseudoprime (base-2) and also contains all digits from 1 to 9 so it is also zeroless pandigital.
		

Crossrefs

Intersection of A050289 and A001262.

Extensions

More terms from Amiram Eldar, Nov 10 2019

A140658 Overpseudoprimes to bases 2 and 3.

Original entry on oeis.org

5173601, 13694761, 16070429, 27509653, 54029741, 66096253, 102690677, 117987841, 193949641, 206304961, 314184487, 390612221, 393611653, 717653129, 960946321, 1157839381, 1236313501, 1481626513, 1860373241, 1921309633, 2217879901, 2412172153, 2626783921
Offset: 1

Views

Author

Vladimir Shevelev, Jul 10 2008

Keywords

Comments

From the first 19 strong pseudoprimes to bases 2 and 3 (A072276) only 6 are overpseudoprimes to the same bases.

Crossrefs

Intersection of A141232 and A141350; subsequence of A072276.

Extensions

More terms from Amiram Eldar, Jun 24 2019

A143012 Numbers of the form (4^p + 2^p + 1)/7, where p > 3 is prime.

Original entry on oeis.org

151, 2359, 599479, 9588151, 2454285751, 39268347319, 10052678938039, 41175768098368951, 658812288653553079, 2698495133088002829751, 690814754065816531725751, 11053036065049294753459639, 2829577232652317876553477559, 11589948344943812957569751412151
Offset: 1

Views

Author

Vladimir Shevelev, Jul 15 2008, Jul 21 2008

Keywords

Comments

If 8^p-1 is squarefree then the terms of the sequence are either primes (A000040) or overpseudoprimes to base 2 (A141232). In particular, composite numbers of the sequence are strong pseudoprimes to base 2 (A001262). E.g., a(5)=2454285751 is A001262(1828).

Crossrefs

Programs

  • Maple
    p:=ithprime: seq((4^p(n)+2^p(n)+1)*1/7, n=3..14); # Emeric Deutsch, Aug 16 2008
  • Mathematica
    (4^#+2^#+1)/7&/@Prime[Range[3,30]] (* Harvey P. Dale, Feb 19 2013 *)

Extensions

Extended by Emeric Deutsch, Aug 16 2008
More terms from Harvey P. Dale, Feb 19 2013

A180066 Smallest prime factor of 2-strong pseudoprimes.

Original entry on oeis.org

23, 29, 37, 31, 53, 7, 13, 127, 157, 7, 97, 5, 61, 53, 149, 151, 229, 137, 157, 103, 43, 41, 157, 233, 151, 277, 13, 131, 313, 277, 11, 233, 157, 359, 499, 13, 79, 431, 5, 101, 397, 661, 307, 479, 313, 331, 13, 251, 11, 601, 103, 1093, 449, 409, 733, 571, 499, 673, 829
Offset: 1

Views

Author

Kevin Batista (kevin762401(AT)yahoo.com), Aug 09 2010

Keywords

Examples

			The 8th pseudoprime, 42799, is divisible by 127.
		

Formula

a(n) = A020639(A001262(n)).

Extensions

b-file and edits from Charles R Greathouse IV, Aug 28 2010

A273618 Numbers m = 2*k+1 where k is odd with the property that 3^k mod m = 1 and k^k mod m = 1.

Original entry on oeis.org

11, 59, 83, 107, 131, 179, 227, 251, 347, 419, 443, 467, 491, 563, 587, 659, 683, 827, 947, 971, 1019, 1091, 1163, 1187, 1259, 1283, 1307, 1427, 1451, 1499, 1523, 1571, 1619, 1667, 1787, 1811, 1907, 1931, 1979, 2003, 2027, 2099, 2243, 2267
Offset: 1

Views

Author

Alzhekeyev Ascar M, May 26 2016

Keywords

Comments

All composites in this sequence are 2-pseudoprimes, see A001567, and strong pseudoprimes to base 2, A001262.
The subsequence of these composites begins: 143193768587, 440097066011, 1188059560451, 1392770336147, 1640446291859, 2526966350771, 3639120872171, 3989703695867, 4202422108523, ....
Perhaps this sequence contains all the terms of the sequence A107007 (except 3) or A168539.

Examples

			m=131; 131=2*65+1; 3^65 mod 131 = 1 and 65^65 mod 131 = 1.
		

Crossrefs

Subsequence of A176997.

Programs

  • Maple
    filter:= proc(n) local k;
      k:= (n-1)/2;
      3 &^ k mod n = 1 and k &^ k mod n = 1
    end proc:
    select(filter, [seq(i,i=3..3000, 4)]); # Robert Israel, Nov 28 2019
  • Mathematica
    2#+1&/@Select[Range[1,1200,2],PowerMod[3,#,2#+1]==PowerMod[ #,#,2#+1] == 1&] (* Harvey P. Dale, May 05 2022 *)

A288153 Plumb pseudoprimes: odd composites that pass Colin Plumb's extended Euler criterion test.

Original entry on oeis.org

1729, 1905, 2047, 2465, 3277, 4033, 4681, 8321, 12801, 15841, 16705, 18705, 25761, 29341, 33153, 34945, 41041, 42799, 46657, 49141, 52633, 65281, 74665, 75361, 80581, 85489, 87249, 88357, 90751, 104653, 113201
Offset: 1

Views

Author

Keywords

Comments

Suppose n is composite. Then if n = 1 mod 8, it is in the sequence if 2^((n-1)/4) = 1 or -1 mod n; if n = 3 or 5 mod 8, it is in the sequence if 2^((n-1)/2) = -1 mod n; and if n = 3 mod 8, it is in the sequence if 2^((n-1)/2) = 1 mod n.
a(1) = 1729 is the Hardy-Ramanujan number. - Omar E. Pol, Jun 05 2017

Crossrefs

Subsequence of A001567; A001262 is a subsequence.

Programs

  • PARI
    is(n)=if(n<2 || isprime(n) || n%2==0, return(0)); my(n8=n%8, e=n>>((n8==1)+1), t=Mod(2,n)^e); if(t==1, n8==1 || n8==7, if(t==-1, n8==1 || n8==3 || n8==5, 0))
  • Perl
    use Math::Prime::Util ':all'
    foroddcomposites { print "$, " if is_euler_plumb_pseudoprime($); } 9,999999;
    

A329759 Odd composite numbers k for which the number of witnesses for strong pseudoprimality of k equals phi(k)/4, where phi is the Euler totient function (A000010).

Original entry on oeis.org

15, 91, 703, 1891, 8911, 12403, 38503, 79003, 88831, 146611, 188191, 218791, 269011, 286903, 385003, 497503, 597871, 736291, 765703, 954271, 1024651, 1056331, 1152271, 1314631, 1869211, 2741311, 3270403, 3913003, 4255903, 4686391, 5292631, 5481451, 6186403, 6969511
Offset: 1

Views

Author

Amiram Eldar, Nov 20 2019

Keywords

Comments

Odd numbers k such that A071294((k-1)/2) = A000010(k)/4.
For each odd composite number m > 9 the number of witnesses <= phi(m)/4. For numbers in this sequence the ratio reaches the maximal possible value 1/4.
The semiprime terms of this sequence are of the form (2*m+1)*(4*m+1) where 2*m+1 and 4*m+1 are primes and m is odd.

Examples

			15 is in the sequence since out of the phi(15) = 8 numbers 1 <= b < 15 that are coprime to 15, i.e., b = 1, 2, 4, 7, 8, 11, 13, and 14, 8/4 = 2 are witnesses for the strong pseudoprimality of 15: 1 and 14.
		

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, 2005, Theorem 3.5.4., p. 136.

Crossrefs

Programs

  • Mathematica
    o[n_] := (n - 1)/2^IntegerExponent[n - 1, 2];
    a[n_?PrimeQ] := n - 1; a[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, om = Length[p]; Product[GCD[o[n], o[p[[k]]]], {k, 1, om}] * (1 + (2^(om * Min[IntegerExponent[#, 2] & /@ (p - 1)]) - 1)/(2^om - 1))];
    aQ[n_] := CompositeQ[n] && a[n] == EulerPhi[n]/4; s = Select[Range[3, 10^5, 2], aQ]

A376253 Composite numbers k such that 2^(2^(k-1)-1) == 1 (mod k^2).

Original entry on oeis.org

4681, 15841, 42799, 52633, 220729, 647089, 951481, 1082401, 1145257, 1969417, 2215441, 3567481, 4835209, 5049001, 5681809, 6140161, 6334351, 8725753, 10712857, 11777599, 12327121, 13500313, 14709241, 22564081, 22849481, 22953673, 23828017, 27271151, 28758601, 30576151
Offset: 1

Views

Author

Thomas Ordowski, Sep 17 2024

Keywords

Comments

If 2^(k-1) == 1 (mod k) and 2^(2^(k-1)-1) == 1 (mod k), then 2^(2^(k-1)-1) == 1 (mod k^2). In fact, all such pseudoprimes are strong pseudoprimes to base 2.
Other terms; 951481 = 271*3511, 2215441 = 631*3511, 28758601 = 8191*3511, ... are not Fermat pseudoprimes to base 2, where 3511 is a Wieferich prime. The Wieferich prime 1093 cannot be a factor of these numbers (see A374953).

Crossrefs

Programs

  • Mathematica
    q[k_] := Module[{m = MultiplicativeOrder[2, k^2]}, PowerMod[2, k-1, m] == 1]; Select[Range[1, 10^6, 2], CompositeQ[#] && q[#] &] (* Amiram Eldar, Sep 17 2024 *)
  • PARI
    is(k) = (k > 1) && k % 2 && !isprime(k) && Mod(2, znorder(Mod(2, k^2)))^(k-1) == 1; \\ Amiram Eldar, Sep 17 2024

Extensions

More terms from Amiram Eldar, Sep 17 2024
Previous Showing 61-70 of 78 results. Next