A127778
Triangle T(n,k) = A002411(k) read by rows.
Original entry on oeis.org
1, 1, 6, 1, 6, 18, 1, 6, 18, 40, 1, 6, 18, 40, 75, 1, 6, 18, 40, 75, 126, 1, 6, 18, 40, 75, 126, 196, 1, 6, 18, 40, 75, 126, 196, 288
Offset: 1
First few rows of the triangle are:
1;
1, 6;
1, 6, 18;
1, 6, 18, 40;
1, 6, 18, 40, 75;
...
A151510
The triangle in A151338 read by rows upwards.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 1, 0, 1, 10, 25, 15, 1, 0, 1, 15, 65, 90, 31, 0, 0, 1, 21, 140, 350, 301, 56, 0, 0, 1, 28, 266, 1050, 1701, 938, 91, 0, 0, 1, 36, 462, 2646, 6951, 7686, 2737, 126, 0, 0, 1, 45, 750, 5880, 22827, 42315, 32725, 7455, 126, 0, 0
Offset: 0
Triangle begins:
1
1 0
1 1 0
1 3 1 0
1 6 7 1 0
1 10 25 15 1 0
1 15 65 90 31 0 0
1 21 140 350 301 56 0 0
1 28 266 1050 1701 938 91 0 0
...
A259455
n Sum_n Sum_n Sum_n.
Original entry on oeis.org
1, 30, 270, 1400, 5250, 15876, 41160, 95040, 200475, 393250, 726726, 1277640, 2153060, 3498600, 5508000, 8434176, 12601845, 18421830, 26407150, 37191000, 51546726, 70409900, 94902600, 126360000, 166359375, 216751626, 279695430, 357694120, 453635400, 570834000
Offset: 1
A351766
a(n) = Sum_{j=1..n} Sum_{i=1..j} (i*j)^4.
Original entry on oeis.org
0, 1, 273, 8211, 98835, 710710, 3659110, 14886186, 50816298, 151416111, 404746111, 990005445, 2248888005, 4798557036, 9703780828, 18730825828, 34711648356, 62053834605, 107439683325, 180766879111, 296393439111, 474761104818, 744484165986, 1145004918190, 1729932641710, 2571200219835
Offset: 0
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
{a(n) = n*(n+1)*(n+2)*(2*n+1)*(2*n+3)*(9*n^5+25*n^4-5*n^3-25*n^2+21*n-5)/1800};
-
a(n) = sum(j=1, n, sum(i=1, j, i^4*j^4));
A382225
Triangle read by rows: T(n,k) = Sum_{i=k..n} C(i-1,i-k)*C(i,k).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 25, 13, 1, 1, 15, 65, 73, 21, 1, 1, 21, 140, 273, 171, 31, 1, 1, 28, 266, 798, 871, 346, 43, 1, 1, 36, 462, 1974, 3321, 2306, 631, 57, 1, 1, 45, 750, 4326, 10377, 11126, 5335, 1065, 73, 1, 1, 55, 1155, 8646, 28017, 42878, 31795, 11145, 1693, 91, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 3, 1;
1, 6, 7, 1;
1, 10, 25, 13, 1;
1, 15, 65, 73, 21, 1;
1, 21, 140, 273, 171, 31, 1;
...
-
T:= proc(n, k) option remember; `if`(n<0, 0,
T(n-1, k)+binomial(n-1, k-1)*binomial(n, k))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Mar 20 2025
-
A382225[n_, k_] := A382225[n, k] = If[k == n, 1, A382225[n-1, k] + Binomial[n-1, k-1]*Binomial[n, k]];
Table[A382225[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 22 2025 *)
-
h[i,j]:=binomial(i+j-3,i-1);
for n:1 thru 7 do
if n=1 then print([1])
else (M:genmatrix(h,n,n),
print(makelist(determinant(minor(M,k,k)),k,1,n))
);
A273528
Triangle T(n,m) (n >= 1, 0 <= m < n) giving coefficients of (n-1)! P_n, where P_n is the polynomial formula for row n of A213086.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 2, 9, 10, 3, 0, 2, 25, 50, 35, 8, 0, -12, 86, 270, 260, 102, 14, 0, -120, 140, 1344, 2030, 1260, 350, 36, 0, -1248, -1016, 7336, 15862, 13048, 5236, 1024, 78, 0, -9216, -22464, 28528, 124488, 139776, 76104, 22152, 3312, 200, 0, -90720, -322344, 1860, 1036990, 1514205, 1018563, 379890, 80760, 9165, 431
Offset: 1
Row T(5) = {0, 2, 9, 10, 3}, so P_5(k) = (1/4!)(2k + 9k^2 + 10k^3 + 3k^4), which gives 1, 7, 25, 65, 140, 266, ..., that is A001296 (row 5 of A213086), for k >=1.
Triangle begins:
{1},
{0, 1},
{0, 1, 1},
{0, 1, 3, 2},
{0, 2, 9, 10, 3},
{0, 2, 25, 50, 35, 8},
{0, -12, 86, 270, 260, 102, 14},
...
A301972
a(n) = n*(n^2 - 2*n + 4)*binomial(2*n,n)/((n + 1)*(n + 2)).
Original entry on oeis.org
0, 1, 4, 21, 112, 570, 2772, 13013, 59488, 266526, 1175720, 5123426, 22108704, 94645460, 402503220, 1702300725, 7165821120, 30043474230, 125523450360, 522857438070, 2172127120800, 9002522512620, 37233403401480, 153704429299746, 633442159732032, 2606543487445100, 10710790748646352, 43957192722175908
Offset: 0
For n = 5 we have:
----------------------------
0 1 2 3 4 [5]
----------------------------
0, 1, 5, 12, 22, 35, ... A000326 (pentagonal numbers)
0, 1, 6, 18, 40, 75, ... A002411 (pentagonal pyramidal numbers)
0, 1, 7, 25, 65, 140, ... A001296 (4-dimensional pyramidal numbers)
0, 1, 8, 33, 98, 238, ... A051836 (partial sums of A001296)
0, 1, 9, 42, 140, 378, ... A051923 (partial sums of A051836)
0, 1, 10, 52, 192, [570], ... A050494 (partial sums of A051923)
----------------------------
therefore a(5) = 570.
Cf.
A000984,
A002457,
A006484,
A057145,
A060354,
A080851,
A080852,
A100119,
A180266,
A275490,
A292551.
-
Table[n (n^2 - 2 n + 4) Binomial[2 n, n]/((n + 1) (n + 2)), {n, 0, 27}]
nmax = 27; CoefficientList[Series[(-4 + 31 x - 66 x^2 + 28 x^3 + (4 - 7 x) (1 - 4 x)^(3/2))/(2 x^2 (1 - 4 x)^(3/2)), {x, 0, nmax}], x]
nmax = 27; CoefficientList[Series[Exp[2 x] (4 - x + 2 x^2) BesselI[1, 2 x]/x - 2 Exp[2 x] (2 - x) BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^(n + 3), {x, 0, n}], {n, 0, 27}]
A301973
a(n) = (n^2 - 3*n + 6)*binomial(n+2,3)/4.
Original entry on oeis.org
0, 1, 4, 15, 50, 140, 336, 714, 1380, 2475, 4180, 6721, 10374, 15470, 22400, 31620, 43656, 59109, 78660, 103075, 133210, 170016, 214544, 267950, 331500, 406575, 494676, 597429, 716590, 854050, 1011840, 1192136, 1397264, 1629705, 1892100, 2187255, 2518146, 2887924, 3299920, 3757650, 4264820
Offset: 0
-
Table[(n^2 - 3 n + 6) Binomial[n + 2, 3]/4, {n, 0, 40}]
nmax = 40; CoefficientList[Series[x (1 - 2 x + 6 x^2)/(1 - x)^6, {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Exp[x] x (24 + 24 x + 24 x^2 + 10 x^3 + x^4)/24, {x, 0, nmax}], x] Range[0, nmax]!
Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^5, {x, 0, n}], {n, 0, 40}]
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 4, 15, 50, 140}, 41]
A351770
a(n) = Sum_{j=1..n} Sum_{i=1..j} (i*j)^5.
Original entry on oeis.org
0, 1, 1057, 68125, 1399325, 15227450, 110102426, 597639882, 2621915850, 9756511275, 31839011275, 93340522951, 250280856007, 622316813300, 1450471654100, 3196426654100, 6706824221076, 13476181309557, 26055415288725, 48670370285425, 88136930285425, 155187254126926
Offset: 0
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
seq(n*(n+1)*(n+2)*(44*n^9+276*n^8+492*n^7-48*n^6-609*n^5+207*n^4+487*n^3-291*n^2-90*n+60)/3168,
n=0..30);# Robert Israel, Feb 18 2022
-
{a(n) = n*(n+1)*(n+2)*(44*n^9+276*n^8+492*n^7-48*n^6-609*n^5+207*n^4+487*n^3-291*n^2-90*n+60)/3168};
-
a(n) = sum(j=1, n, sum(i=1, j, i^5*j^5));
Comments