A174139 Numbers congruent to {0,1,2,3,4,10,11,12,13,14,20,21,22,23,24} mod 25.
0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 85, 86, 87, 88, 89, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 110, 111, 112
Offset: 1
Links
- Index entries for sequences related to making change.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Mathematica
Select[Range[0, 112], Mod[Mod[#, 25], 10] < 5 &] (* Amiram Eldar, Oct 08 2020 *)
-
PARI
{ my(table=[0,1,2,3,4, 10,11,12,13,14, 20,21,22,23,24]); a(n) = my(r);[n,r]=divrem(n-1,15); 25*n + table[r+1]; } \\ Kevin Ryde, Oct 08 2020
Formula
a(15+n) = a(n) + 25 for n >= 1.
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = +a(n-1) +a(n-15) -a(n-16).
G.f.: x^2*(1 +x +x^2 +x^3 +6*x^4 +x^5 +x^6 +x^7 +x^8 +6*x^9 +x^10 +x^11 +x^12 +x^13+x^14) / ( (1+x+x^2) *(x^4+x^3+x^2+x+1) *(x^8-x^7+x^5-x^4+x^3-x+1) *(x-1)^2). (End)
Comments