cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 1775 results. Next

A102913 Take characteristic function of the semiprimes A001358, interpret it as a binary fraction and convert to a decimal fraction.

Original entry on oeis.org

0, 4, 0, 5, 7, 3, 5, 0, 0, 2, 0, 1, 3, 9, 8, 0, 6, 8, 6, 7, 4, 3, 1, 1, 2, 6, 6, 4, 2, 3, 5, 3, 5, 7, 5, 0, 6, 9, 3, 6, 2, 7, 5, 8, 2, 1, 9, 4, 0, 0, 2, 3, 5, 8, 6, 0, 8, 3, 3, 4, 0, 6, 9, 4, 6, 3, 3, 3, 6, 2, 5, 2, 4, 7, 3, 5, 1, 3, 5, 1, 3, 9, 1, 0, 5, 4, 4, 2, 5, 2, 5, 8, 2, 3, 8, 0, 5, 8, 6, 4, 3, 3, 4, 5, 2
Offset: 0

Views

Author

Jonathan Vos Post, Jan 17 2005

Keywords

Crossrefs

For the continued fraction form of the semiprime constant, see A102914. For the equivalent characteristic function for primes, see A010051; interpreted as a binary fraction see A051006; for the continued fraction form of that see A051007.

Programs

  • Mathematica
    Semiprime[n_] := If[Plus @@ Last[ Transpose[ FactorInteger[n]]] == 2, 1, 0]; RealDigits[ FromDigits[{Table[ Semiprime[n], {n, 2, 350}], -2}, 2], 10, 111][[1]] (* Ed Pegg Jr *)

Formula

The characteristic function of the semiprimes is the function f(n) = 1 iff n is semiprime, 0 otherwise. This begins, for n = 0, 1, 2, 3, ... f(n) = 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1... If we concatenate these bits and interpret them as the binary fraction 0.0000101001100011000001... (base 2) we have, expressed as a decimal fraction, 0.0405735002013980686743112664235357506936275821940023586083340694633362...
The characteristic function of A001358 is A064911 (for n >= 1, starting with 0, 0, 0, 1 ...). The binary constant here has an additional 0 after the binary point. - Georg Fischer, Aug 04 2021

Extensions

More terms from Robert G. Wilson v, Jan 24 2005

A109403 Examine the sequence of all (even or odd) semiprimes, A001358, and record the averages of any pair of successive terms of the same parity.

Original entry on oeis.org

5, 12, 18, 50, 53, 56, 60, 67, 89, 92, 113, 120, 126, 131, 144, 160, 173, 184, 186, 204, 211, 216, 220, 236, 242, 248, 251, 266, 276, 288, 290, 293, 300, 304, 307, 320, 322, 328, 337, 340, 368, 374, 379, 384, 392
Offset: 1

Views

Author

Zak Seidov, Jun 27 2005

Keywords

Examples

			5 is OK because sp(1)=4, sp(2)=6 and (4+6)/2=5; 12 is OK because sp(4)=10, sp(5)=14 and (10+14)/2=12; sp(n)=n-th semiprime.
		

Crossrefs

Programs

  • Maple
    A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc:
    # To produce a b-file
    M:=50000; c:=0;
    for n from 1 to M do
    if type(A001358(n)+A001358(n+1),even) then c:=c+1;
    m:=(A001358(n)+A001358(n+1))/2;
    lprint(c,m);
    fi; od; # N. J. A. Sloane, Aug 27 2020
  • Mathematica
     Select[Mean/@Partition[Select[Range[400],PrimeOmega[#]==2&],2,1],IntegerQ] (* Harvey P. Dale, Aug 27 2020 *)

Extensions

Definition corrected by N. J. A. Sloane, Aug 26 2020. The original definition appeared to be based on A100484, but that was incorrect. Thanks to Harvey P. Dale for pointing out that something was wrong.

A113475 a(1)=1 and a(n) for n>1 has the smallest positive value such that Sum_{i=1..n} a(i)^a(n-i+1) is semiprime (A001358).

Original entry on oeis.org

1, 3, 5, 2, 4, 2, 2, 4, 2, 4, 3, 2, 3, 4, 2, 2, 1, 1, 2, 1, 5, 1, 7, 1, 5, 4, 2, 2, 3, 3, 2, 11, 5, 10, 4, 2, 2, 6, 14, 4, 6, 2, 3, 9, 14, 10, 3, 3, 4, 2, 1, 5, 4, 16, 8, 9, 5, 8, 14, 6, 2, 2, 26, 8, 30, 4, 5, 1, 4, 2, 22, 36, 20, 2, 10, 2, 15, 3, 18, 6, 15
Offset: 1

Views

Author

Jonathan Vos Post, Jan 08 2006

Keywords

Comments

Previous name was: Least integers so ascending descending base exponent transforms all semiprime.
Semiprime analogy to A113320. The sequence is probably infinite, but it is hard to characterize the asymptotic cost of adding an n-th term. The ascending descending base exponent transform of semiprimes is A113173.
The sequence is infinite because a(n) is the minimum k such that a(1)^k + k^a(1) + Sum_{i=2..n-1} a(i)^a(n-i+1) is semiprime, and since a(1)=1 this is equal to 1+k+T where T does not depend on k, thus k is the smallest positive value that makes 1+k+T semiprime, which exists because semiprimes are infinite. - Giovanni Resta, Jan 03 2020

Examples

			a(1) = 1 by definition.
a(2) = 3 because 3 is the min x such that 1^x + x^1 is semiprime, i.e., 1^3 + 3^1 = 4 = 2*2.
a(3) = 5 because 1^5 + 3^3 + 5^1 = 33 = 3 * 11 is semiprime.
a(4) = 2 because 1^2 + 3^5 + 5^3 + 2^1 = 371 = 7 * 53.
a(5) = 4 because 1^4 + 3^2 + 5^5 + 2^3 + 4^1 = 3147 = 3 * 1049.
a(6) = 2 because 1^2 + 3^4 + 5^2 + 2^5 + 4^3 + 2^1 = 205 = 5 * 41.
a(7) = 2 because 1^2 + 3^2 + 5^4 + 2^2 + 4^5 + 2^3 + 2^1 = 1673 = 7 * 239.
a(8) = 4 because 1^4 + 3^2 + 5^2 + 2^4 + 4^2 + 2^5 + 2^3 + 4^1 = 111 = 3 * 37.
		

Crossrefs

Programs

  • Mathematica
    semipQ[n_] := PrimeOmega[n] == 2; inve[w_] := Total[w^Reverse[w]]; a[1] = 1; a[n_] := a[n] = Block[{k = 0}, While[! semipQ[ inve@ Append[ Array[a, n - 1], ++k]]]; k]; Array[a, 81] (* Giovanni Resta, Jun 13 2016 *)
  • PARI
    lista(n)={my(a=vector(n)); a[1]=1; print1(1, ", "); for(n=2, #a, my(t=sum(i=2, n-1, a[i]^a[n-i+1])); my(k=1); while(2!=bigomega(t+1+k), k++); a[n]=k; print1(k, ", "))} \\ Andrew Howroyd, Jan 03 2020

Formula

a(1) = 1. For n>1, a(n) = min {k>0: a(1)^k + k^a(1) + Sum_{i=2..n-1} a(i)^a(n-i+1) is in A001358}.

Extensions

Corrected and extended by Giovanni Resta, Jun 13 2016

A115665 Brilliant numbers (A078972) whose digit reversal is a semiprime (A001358).

Original entry on oeis.org

4, 6, 9, 15, 49, 121, 143, 169, 187, 221, 289, 319, 323, 341, 437, 493, 533, 551, 559, 589, 629, 667, 737, 767, 781, 817, 851, 871, 893, 899, 913, 923, 949, 961, 979, 989, 1027, 1067, 1079, 1121, 1219, 1247, 1273, 1343, 1357, 1387, 1411, 1513, 1577
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			551=19*29 is brilliant and 155=5*31 is semiprime.
		

Crossrefs

A115666 Semiprimes (A001358) whose digit reversal is a brilliant number (A078972).

Original entry on oeis.org

4, 6, 9, 51, 94, 121, 122, 143, 155, 158, 169, 178, 187, 319, 323, 329, 335, 341, 394, 398, 718, 734, 737, 766, 767, 781, 913, 926, 949, 955, 961, 979, 982, 985, 989, 998, 1141, 1202, 1211, 1273, 1322, 1343, 1405, 1415, 1655, 1691, 1703, 1714, 1807
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			155=5*31 is semiprime and 551=19*29 is brilliant.
		

Crossrefs

A115712 Semiprimes (A001358) whose digit reversal is a cube.

Original entry on oeis.org

10, 46, 215, 3194, 9586, 27845, 35605, 40393, 52651, 63379, 70597, 76121, 84601, 98342, 119753, 189622, 211591, 234413, 291149, 376219, 485038, 616571, 778841, 886877, 946711, 2134493, 2198998, 2579365, 3405221, 3735467, 4430089
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			46=2*23 is semiprime and 64=4^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5*10^6],PrimeOmega[#]==2&&IntegerQ[Surd[ IntegerReverse[ #],3]]&] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Jan 18 2016 *)

A115740 Cubes whose digit reversal is a semiprime (A001358).

Original entry on oeis.org

64, 512, 4913, 6859, 10648, 12167, 15625, 24389, 39304, 50653, 54872, 64000, 79507, 97336, 117649, 148877, 175616, 195112, 226981, 314432, 357911, 512000, 778688, 830584, 912673, 941192, 1092727, 1124864, 1191016, 1225043, 1295029
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			64=4^3 and 46=2*23 is semiprime.
		

Crossrefs

A115741 Semiprimes (A001358) whose digit reversal is a triangular number.

Original entry on oeis.org

6, 10, 51, 55, 82, 87, 309, 501, 649, 694, 1198, 1207, 1473, 1765, 1803, 1837, 1959, 1981, 3043, 3057, 3561, 3574, 5158, 5221, 5721, 6139, 6193, 6267, 6535, 6711, 6814, 6843, 10473, 10497, 11553, 12477, 12693, 13123, 13701, 13951, 14169
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			51=3*17 is semiprime and 15=T(5).
		

Crossrefs

A116000 phi(n) + sigma(n) gives a semiprime (A001358).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 13, 16, 17, 19, 22, 23, 25, 27, 29, 31, 37, 40, 41, 43, 46, 47, 52, 53, 58, 59, 61, 64, 67, 68, 71, 72, 73, 79, 80, 82, 83, 89, 97, 98, 101, 103, 106, 107, 109, 113, 117, 127, 128, 131, 136, 137, 139, 144, 149, 151, 157, 162, 163, 166, 167
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			phi(101)+sigma(101)=202=2*101.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],PrimeOmega[EulerPhi[#]+DivisorSigma[1,#]]==2&] (* Harvey P. Dale, Feb 05 2013 *)

A116023 The n-th prime plus n gives a semiprime (A001358).

Original entry on oeis.org

10, 12, 14, 15, 16, 19, 20, 21, 23, 25, 30, 31, 36, 37, 38, 39, 40, 44, 52, 54, 56, 57, 58, 60, 62, 67, 74, 75, 77, 80, 83, 84, 86, 88, 90, 99, 107, 111, 115, 120, 124, 136, 140, 145, 146, 154, 156, 160, 162, 164, 165, 166, 168, 174, 175, 182, 189, 192, 195, 196
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			p(30)+30=143=11*13.
		

Crossrefs

Previous Showing 61-70 of 1775 results. Next