cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 87 results. Next

A323561 Number of rooted self-avoiding king's walks of n moves on an infinite chessboard with first move specified.

Original entry on oeis.org

2, 14, 92, 584, 3644, 22482, 137626, 837466, 5072590, 30611376, 184171252, 1105262004, 6618842522, 39564403462, 236123357538, 1407249202976, 8376673823516
Offset: 1

Views

Author

Hugo Pfoertner, Jan 17 2019

Keywords

Comments

The first move is either (0,0) -> (1,0) or (0,0) -> (1,1). Rotated paths are not counted separately.

Crossrefs

A334602 Number of self-avoiding walks on a 2-dimensional square lattice where the walk consists of steps of length 1 to n which can be taken in any order.

Original entry on oeis.org

1, 4, 24, 216, 2544, 36832, 632736, 12566016, 283849872, 7179191888, 200946557168, 6165203252096
Offset: 0

Views

Author

Scott R. Shannon, May 07 2020

Keywords

Comments

This sequence gives the number of self-avoiding walks on a 2-dimensional square lattice where the walk consists of steps of length 1 to n which can be taken in any order. Walks which visit the same lattice coordinates but are done so by taking steps of the same length in different order are considered to be different walks. For example a walk consisting of steps with length 1 and 2 to the right is counted as a different walk to one with step lengths 2 and 1 to the right.
The first time a collision with a previous step can occur is for n = 4. If we only consider the first step being taken to the right then there are six ways this can occur. These are 2R->3U->1L->4D, 3R->1U->2L->4D, 3R->2U->1L->4D, 4R->1U->2L->3D, 4R->1U->3L->2D, 4R->2U->1L->3D, where the number is the step length and R,L,U,D are directions right,left,up and down from the origin.

Examples

			a(1) = 4. These are the four directions one can step 1 unit away from the origin on a 2D square lattice.
a(2) = 24. These consist of the following four walks:
.
    *
    |             *        1     2            2     1
    . 2           | 1    *---*---.---*    *---.---*---*
    |     *---.---*
*---*         2
  1
.
The first two can be walked in eight different ways on a 2D lattice, the last two in four different ways, giving a total of 2*8+2*4 = 24.
a(3) = 216. Restricting the first step to the right then the different ways a walk can take three steps on a 2D lattice within the first quadrant are RUL, RUU, RUR, RRU, RRR. Each of these can be taken in 6 ways, the arrangements of 1,2,3. The first four walks can also be taken in eight ways on the 2D lattice, the last in four ways, giving a total of 4*8*3!+1*4*3! = 216.
a(4) = 2544. Restricting the first step to the right then the different ways a walk can take four steps on a 2D lattice within the first quadrant are RULD, RULL, RULU, RUUL, RUUU, RUUR, RURU, RURR, RURD, RRUL, RRUU, RRUR, RRRU, RRRR. Each of these can be taken in 24 ways, the arrangements of 1,2,3,4. However six of these walks are forbidden due to the collisions given in the comments. The first thirteen walks can also be taken in eight ways on the 2D lattice, the fourteenth in four ways. This gives a total number of walks of 13*8*4! - 6*8 + 4*4! = 2544.
		

Crossrefs

A334756 Irregular table read by rows: T(n,k) is the number of 2n-step closed self-avoiding paths on a 2D square lattice with area k, where k >= n-1.

Original entry on oeis.org

0, 8, 24, 96, 16, 360, 160, 40, 1320, 960, 528, 144, 24, 4872, 4704, 3752, 2016, 840, 224, 56, 18112, 21632, 20992, 15424, 9920, 4832, 2176, 704, 192, 32, 67248, 96192, 107712, 93312, 75096, 50112, 31104, 16416, 7848, 3168, 1080, 288, 72
Offset: 1

Views

Author

Scott R. Shannon, May 10 2020

Keywords

Comments

See A010566 for the number of closed self-avoiding 2D square lattice paths. Like that sequence here all possible paths are counted when determining the polygon areas, including those that are equivalent via rotation and reflection.

Examples

			For n = 2, total steps = 4, there are 8 different paths with an area of 1. These are the 8 possible ways to walk the polygon:
+---+
|   |
+---+
.
For n = 3, total steps = 6, there are 24 different paths with an area of 2. These are the 24 possible ways to walk the polygon:
+---+---+
|       |
+---+---+
.
For n = 4, total steps = 8, there are 96 different paths with an area of 3 and 16 different paths with an area of 4. These are the possible ways to walk the polygons:
+---+                      +---+---+
|   |                      |       |
+   +---+                  +       +
|       |                  |       |
+---+---+  for area = 3    +---+---+ for area = 4
.
For n = 5, total steps = 10, there are 360 different paths with an area of 4, 160 paths with an area of 5 and 40 different paths with an area of 6. These are the possible ways to walk the polygons:
+---+---+---+---+    +---+               +---+           +---+---+
|               |    |   |               |   |           |       |
+---+---+---+---+    +   +---+---+   +---+   +---+   +---+   +---+
                     |           |   |           |   |       |
                     +---+---+---+   +---+---+---+   +---+---+      for area = 4
.
+---+---+                      +---+---+---+
|       |                      |           |
+       +---+                  +           +
|           |                  |           |
+---+---+---+  for area = 5    +---+---+---+  for area = 6
.
Table begins:
0;
8;
24;
96,16;
360,160,40;
1320,960,528,144,24;
4872,4704,3752,2016,840,224,56;
18112,21632,20992,15424,9920,4832,2176,704,192,32;
67248,96192,107712,93312,75096,50112,31104,16416,7848,3168,1080,288,72;
249480,415040,526400,514480,468680,373280,281280,189920,120400,69120,36560,17040,7480,2720,880,240,40;
Row sums = A010566.
		

Crossrefs

Formula

T(n, k) = 4 * n * A008855(k, n). - Andrey Zabolotskiy, Sep 27 2024

A336262 Number of self-avoiding walks on a 2-dimensional square lattice where the walk consists of steps with incrementing lengths equal to the prime numbers, from 2 to prime(n).

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2876, 8364, 24124, 69116, 196916, 559604, 1585764, 4495740, 12714796, 35654620, 99686708, 278880060, 781504972, 2180418716, 6079373324, 16857930068, 46773551052, 129562831140, 358157148332
Offset: 0

Views

Author

Scott R. Shannon, Jul 15 2020

Keywords

Comments

The first time a collision with a previous step can occur is for n = 7, i.e., a walk with steps of length 2,3,5,7,11,13,17. If we consider only walks starting with one or more steps to the right followed by an upward step then a collision can occur in five ways. These are 2R->3U->5U->7U->11R->13D->17L, 2R->3U->5U->7U->11L->13D->17R, 2R->3U->5R->7R->11U->13L->17D, 2R->3U->5R->7R->11D->13L->17U, 2R->3R->5R->7R->11U->13L->17D, where the number is the step length and R,L,U,D are directions right,left,up and down on the grid. Requiring seven steps before a collision can occur is in contrast to the walk where the steps' lengths increment by 1, see A334877, which requires only six steps.

Examples

			a(1) = 4. These are the four ways one can step away from the origin on a 2D square lattice.
a(2) = 12. These consist of the two following walks:
.
        *
        |
        .
        | 3        2         3
        .      *---.---*---.---.---*
        |
*---.---*
     2
.
The first walk can be taken in eight different ways on the 2D square lattice, the second in four ways, giving a total of 12 walks.
a(7) = 2876. If we consider only walks starting with one or more steps to the right followed by an upward step, and ignoring collisions, then the total number of walks is 3^5+3^4+3^3+3^2+3^1+3^0 = 364. However, five of these are forbidden due to the collisions given in the comments, leaving 359 in total. These can be walked in eight different ways on the 2D grid. There are also the four straight walks along the axes. This gives a total of 359*8+4 = 2876 walks.
		

Crossrefs

A347990 Number of n-step self-avoiding walks on a 2D square lattice where the walk cannot step to the smaller square ring of numbers than the ring it is currently on.

Original entry on oeis.org

1, 4, 12, 36, 92, 252, 628, 1644, 4052, 10340, 25332, 63708, 155452, 387036, 941948, 2328740, 5657236, 13914596, 33757804, 82713164, 200467108, 489746916, 1186060492, 2891000036, 6997192716, 17025058164, 41186981772, 100070851212, 242000513660, 587312389940
Offset: 0

Views

Author

Scott R. Shannon, Sep 23 2021

Keywords

Comments

The number of the square ring around the origin the walk is currently on is just the maximum of the absolute values of its current x and y coordinates. In this sequence the SAW cannot step to a coordinate that has a smaller ring number than the ring it is currently on. For example, a step from (1,2) to either (2,2), (1,3), (0,2) is permitted as it stays on the second ring or steps to the third, but a step from (1,2) to (1,1) is forbidden as that would be stepping to the smaller first ring.

Examples

			a(0..3) are the same as the standard square lattice SAW of A001411 as the walk cannot step to a smaller ring in the first three steps.
a(4) = 92. If we restrict the first one or more steps to the right followed by an upward step then there is one walk which steps to a smaller ring and is thus forbidden. That is the walk (0,0) -> (1,0) -> (2,0) -> (2,1) -> (1,1). As this can be walked in eight different ways on the square lattice the number of 4-step walks becomes A001411(4) - 8 = 100 - 8 = 92.
		

Crossrefs

A002976 Number of certain self-avoiding walks with n steps on square lattice (see reference for precise definition).

Original entry on oeis.org

0, 1, 0, 2, 0, 5, 9, 21, 42, 76, 174, 396, 888, 2023, 4345, 9921, 22566
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A006142(n)+2*A006143(n)+A006144(n). - R. J. Mathar, Oct 22 2007

A076874 a(n) = n - floor ( ( 4*n + 1 )^(1/2) ).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 15, 15, 16, 17, 18, 19, 19, 20, 21, 22, 23, 24, 24, 25, 26, 27, 28, 29, 29, 30, 31, 32, 33, 34, 35, 35, 36, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59
Offset: 3

Views

Author

Hugo Pfoertner, Nov 24 2002

Keywords

Comments

Conjecture: For n>=7, a(n)-2 is the maximum number of steps in a 2D self-avoiding random walk trapped after n steps having only 2 choices for the next step. a(n) >= A077484(n) + 2.

Crossrefs

Programs

A336448 Sum of square displacements over all n-step self-avoiding walks on a 2D square lattice.

Original entry on oeis.org

0, 4, 32, 164, 704, 2716, 9808, 33788, 112480, 364588, 1157296, 3610884, 11108448, 33765276, 101594000, 302977204, 896627936, 2635423124, 7699729296, 22374323436, 64702914336, 186289216332, 534227118960, 1526445330900, 4347038392480, 12341626847324, 34940293640400, 98660244502668
Offset: 0

Views

Author

Scott R. Shannon, Jul 22 2020

Keywords

Comments

See A001411 for the corresponding number of n-step self-avoiding walks.

Examples

			a(1) = 4 as a single step of length 1 can be taken in four ways on the square lattice the sum of square end-to-end displacements is 4*1 = 4.
a(2) = 32. The two 2-step self-avoiding walks with a first step to the right in the first quadrant with their corresponding square displacements are:
.
    +
    | 2    +---+---+ 4
+---+
.
The first walk can be taken in 8 ways on a square lattice, the latter in 4 ways, thus the total displacement over all 2-step walks is 8*2 + 4*4 = 32.
a(3) = 164. The five 3-step self-avoiding walks with a first step to the right in the first quadrant with their corresponding square displacements are:
.
             +
+---+        |         +---+            +
    | 1      + 5       |    5           | 5   +---+---+---+ 9
+---+        |     +---+        +---+---+
         +---+
.
The first four walks can be taken in 8 ways on a square lattice, the last in 4 ways, thus the total displacement over all 3-step walks is 8*1 + 8*5 + 8*5 + 8*5 + 4*9 = 164.
		

References

Crossrefs

Formula

a(n) = Sum_{k=0..A001411(n)} ( i_k^2 + j_k^2 ) where (i_k, j_k) are the end points of all different self-avoiding n-step walks.
a(n) = 4*A078797(n).

A336724 Number of n-step self-avoiding walks on the half-Manhattan square lattice.

Original entry on oeis.org

1, 3, 7, 17, 37, 83, 181, 399, 863, 1887, 4057, 8797, 18851, 40649, 86911, 186705, 398413, 853407, 1818099, 3885377, 8266359, 17632961, 37473467, 79814011, 169457991, 360469139, 764700473, 1624915019, 3444615545, 7312733017, 15492242679, 32862908109, 69581860921, 147497088201
Offset: 0

Views

Author

Sean A. Irvine, Aug 01 2020

Keywords

Comments

In the half-Manhattan lattice, E-W streets run alternately E and W, but N-S streets are two way.

Crossrefs

Cf. A336705 (coordination sequence), A336742 (self-avoiding cycles), A117633 (Manhattan lattice), A001411 (square lattice), A322419 (L-lattice).

A347506 Number of self-avoiding walks on a 2-dimensional square lattice where the walk consists of steps with incrementing lengths equal to the square numbers, from 1 to n^2.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8676, 25572, 74124, 213788, 614444, 1757012, 5001372, 14175996, 40113156, 113363284, 319328028, 897533236, 2521069708, 7052715556, 19742289948, 55129924484, 153874225436
Offset: 0

Views

Author

Scott R. Shannon, Sep 04 2021

Keywords

Comments

This sequence gives the number of self-avoiding walks on a 2-dimensional square lattice where the walk starts with a step length of 1 which then increments at each step to the next square number until the step length is n^2.
The first time a collision with a previous step can occur is for n = 8, i.e., a walk with step lengths of 1,4,9,16,25,36,49,64. For a walk with one or more initial steps to the right followed by an upward step this can occur in nine different ways. For example, consider a walk with steps of length 1,4,9,16,25 to the right, a step of length 36 upward, then a step of length 49 to the left. A step of length 64 downward would now result in a collision. Requiring eight steps before a collision is in contrast to the standard 2D square lattice SAW of A001411 where a collision can occur on the fourth step.

Examples

			a(1) = 4. These are the four directions one can step away from a point on a 2D square lattice.
a(2) = 12. These consist of the two following walks:
.
    *
    |
    .
    |
    . 4
    |        1         4
    .      *---*---.---.---.---*
    |
*---*
  1
.
The first walk can be taken in 8 different ways, the second in 4 ways, giving a total of 12 walks.
a(8) = 8676. If we consider only walks starting with one or more steps to the right followed by an upward step, and ignoring collisions, then the total number of walks is 3^6 + 3^5 + 3^4 + 3^3 + 3^2 + 3^1 + 3^0 = 1093. However, nine of these are forbidden due to the collisions given in the comments, leaving 1084 in total. These can be walked in eight different ways on the 2D grid. There are also the four straight walks along the axes. This gives a total of 1084*8 + 4 = 8676 walks.
		

Crossrefs

Previous Showing 41-50 of 87 results. Next