A118581
Number of nonisomorphic semigroups of order <= n.
Original entry on oeis.org
1, 2, 7, 31, 219, 2134, 30768, 1658440, 3685688857, 105981863625149
Offset: 0
a(7) = 1658440 = 1 + 1 + 5 + 24 + 188 + 1915 + 28634 + 1627672.
Original entry on oeis.org
1, 3, 10, 45, 273, 2510, 34069, 1703066
Offset: 1
Cf.
A001329,
A001423,
A001426,
A023814,
A027851,
A029851,
A058108,
A058132,
A058133,
A063756,
A079173,
A118581.
A001427
Number of regular semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).
Original entry on oeis.org
1, 3, 9, 42, 206, 1352, 10168, 91073, 925044
Offset: 1
- Tak-Shing T. Chan, YH Yang, Polar n-Complex and n-Bicomplex Singular Value Decomposition and Principal Component Pursuit, IEEE Transactions on Signal Processing ( Volume: 64, Issue: 24, Dec.15, 15 2016 ); DOI: 10.1109/TSP.2016.2612171
- R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
- R. J. Plemmons, Cayley Tables for All Semigroups of Order Less Than 7. Department of Mathematics, Auburn Univ., 1965.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andreas Distler, Classification and Enumeration of Finite Semigroups, A Thesis Submitted for the Degree of PhD, University of St Andrews (2010).
- H. Juergensen and P. Wick, Die Halbgruppen von Ordnungen <= 7, Semigroup Forum, 14 (1977), 69-79.
- H. Juergensen and P. Wick, Die Halbgruppen von Ordnungen <= 7, annotated and scanned copy.
- R. J. Plemmons, There are 15973 semigroups of order 6 (annotated and scanned copy)
- S. Satoh, K. Yama, M. Tokizawa, Semigroups of order 8, Semigroup Forum 49 (1994), 7-29.
- N. J. A. Sloane, Overview of A001329, A001423-A001428, A258719, A258720.
- T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. (Annotated and scanned copy)
- Index entries for sequences related to semigroups
A118100
Number of commutative semigroups of order <= n.
Original entry on oeis.org
1, 2, 5, 17, 75, 400, 2543, 19834, 241639, 11787482, 3530717819
Offset: 0
a(8) = 1 + 1 + 3 + 12 + 58 + 325 + 2143 + 17291 + 221805 = 241639.
A186117
Number of nonisomorphic semigroups of order n minus number of groups of order n.
Original entry on oeis.org
0, 4, 23, 186, 1914, 28632, 1627671, 3684030412, 105978177936290
Offset: 1
a(1) = 0 because there are unique groups and semigroups of order 1, so 1 - 1 = 0.
a(2) = 4 because there are 5 semigroups of order 2 groups and a unique group of order 2, so 5 - 1 = 4.
A278565
a(n) = Sum_{t=1..n} binomial(n,t)*t^(1+(n-t)^2).
Original entry on oeis.org
0, 1, 4, 18, 236, 12760, 3162582, 5965957900, 147395915019656, 38431930179989653632, 90116582088416163834417290, 2118032070086776060232851050813004, 966490912699216393489571072350268614425420, 17165261065730992639912668446254005264689353839299152
Offset: 0
-
Table[Sum[Binomial[n, t] t^(1 + (n - t)^2), {t, 1, n}], {n, 0, 25}] (* Vincenzo Librandi, Nov 27 2016 *)
A328746
Number of loops of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).
Original entry on oeis.org
0, 1, 1, 1, 2, 5, 72, 12151, 53146457
Offset: 0
For the number of group-like algebraic structures of order n, see:
A383219
Number of nilpotent semigroups by order, up to isomorphism and anti-isomorphism.
Original entry on oeis.org
0, 0, 1, 2, 10, 93, 2813, 616830, 1833587417, 52972875977730
Offset: 0
Comments