cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 51 results. Next

A362309 Expansion of e.g.f. exp(x - x^3/3).

Original entry on oeis.org

1, 1, 1, -1, -7, -19, 1, 211, 1009, 953, -14239, -105049, -209879, 1669669, 18057313, 56255291, -294375199, -4628130319, -19929569471, 70149241423, 1652969810521, 9226206209501, -20236475188159, -783908527648861, -5452368869656367
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2023

Keywords

Crossrefs

Column k=2 of A362302.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-x^3/3)))

Formula

a(n) = a(n-1) - 2 * binomial(n-1,2) * a(n-3) for n > 2.
a(n) = n! * Sum_{k=0..floor(n/3)} (-1/3)^k / (k! * (n-3*k)!).

A061138 Number of degree-n odd permutations of order exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 6, 30, 90, 210, 1680, 12096, 114660, 833580, 5928120, 38112360, 259194936, 1739195640, 17043237120, 167089937280, 1837707369840, 18342985021776, 181206905922720, 1673742164139360, 16992525855006240
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - 1/2*exp(x + 1/2*x^2) + 1/2*exp(x - 1/2*x^2) + 1/2*exp(x + 1/2*x^2 + 1/4*x^4) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4).

A061139 Number of degree-n odd permutations of order exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 20, 240, 1260, 5600, 45360, 383040, 2451680, 17128320, 157769040, 1902380480, 18882623760, 163633317120, 2095059774080, 30792478993920, 346562329685760, 3905491275514880, 58609449249207360, 866031730098205440
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - 1/2*exp(x + 1/2*x^2) + 1/2*exp(x - 1/2*x^2) + 1/2*exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) - 1/2*exp(x - 1/2*x^2 + 1/3*x^3 - 1/6*x^6).

A381975 Number of ways for n competitors to rank in a competition in which each match has 4 possible outcomes in which each competitor gains 0, 1, 2 or 3 points.

Original entry on oeis.org

1, 1, 2, 9, 58, 459, 4370, 48999, 632884, 9254473, 151155362, 2727862751
Offset: 0

Views

Author

SiYang Hu, May 06 2025

Keywords

Comments

Also, the number of maps f:{1, 2, ..., n} -> {1, 2, ..., n} such that f(f(f(x))) >= x for all 1 <= x <= n.
When this definition is changed to f(f(x)), then the result would be the Fubini numbers (A000670).

Crossrefs

Programs

  • Haskell
    validMappings :: Int -> Int
    validMappings n = validMappingsDFS n [0] 1 where
      checkCondition f = all (\x -> f !! (f !! (f !! (x-1)) - 1) - 1 >= x) [1..n]
      validMappingsDFS n f x
        | x > n = if checkCondition f then 1 else 0
        | otherwise = sum [validMappingsDFS n (take (x-1) f ++ [i] ++ drop x f) (x+1) | i <- [1..n]]
  • Mathematica
    CheckCondition[f_, n_] := AllTrue[Range[n], (f[[f[[f[[#]]]]]] >= # &)]
    validMappingsDFS[n_, f_, x_] := Module[{i, f2, count},
      If[x > n,
        If[CheckCondition[f, n], 1, 0],
        count = 0;
        For[i = 1, i <= n, i++,
          f2 = f; f2[[x]] = i;  (* Assign mapping for f[x] *)
          count += validMappingsDFS[n, f2, x + 1];  (* Explore further *)
        ];
        count
      ]
    ]
    A381975[n_] := validMappingsDFS[n, ConstantArray[0, n], 1]
    Table[A381975[n], {n, 0, 6}]
  • Python
    def validMappings(n):
        def checkCondition(f, n):
            return all(f[f[f[x]]] >= x for x in range(1, n+1))
        def validMappingsDFS(n, f, x):
            if x > n:
                return 1 if checkCondition(f, n) else 0
            return sum(validMappingsDFS(n, f[:x] + [i] + f[x+1:], x+1) for i in range(1, n+1))
        return validMappingsDFS(n, [0] * (n+1), 1)
    
  • R
    validMappings <- function(n) {
      checkCondition <- function(f, n) all(sapply(1:n, function(x) f[f[f[x]]] >= x))
      validMappingsDFS <- function(n, f, x) {
        if (x > n) return(ifelse(checkCondition(f, n), 1, 0))
        sum(sapply(1:n, function(i) { f[x] <- i; validMappingsDFS(n, f, x + 1) }))
      }
      validMappingsDFS(n, rep(0, n), 1)
    }
    

Extensions

a(11) from Sean A. Irvine, May 13 2025

A061122 Number of degree-n permutations of order exactly 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 5040, 45360, 453600, 3326400, 39916800, 363242880, 3874590720, 34767532800, 567177811200, 6897521030400, 98241008785920, 1138935652807680, 18952720774041600, 258251731634534400
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: -exp(x+1/2*x^2+1/4*x^4)+exp(x+1/2*x^2+1/4*x^4+1/8*x^8).

A061123 Number of degree-n permutations of order exactly 9.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 40320, 403200, 2217600, 26611200, 259459200, 1695133440, 16345929600, 161902540800, 1208560953600, 50830132953600, 866513503215360, 8470676211379200, 166891791625977600, 2699606616475507200
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: -exp(x+1/3*x^3)+exp(x+1/3*x^3+1/9*x^9).

A061124 Number of degree-n permutations of order exactly 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 504, 4032, 27216, 514080, 4823280, 57081024, 500972472, 4412103696, 60619398840, 686638592640, 9335025764064, 104304736815552, 1180585704051936, 29016515871665280, 478096386437121480
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: exp(x) - exp(x+1/2*x^2) - exp(x+1/5*x^5) + exp(x+1/2*x^2+1/5*x^5+1/10*x^10).
From Benedict W. J. Irwin, May 27 2016: (Start)
Let y1(0)=1, y1(1)=1,
Let -y1(n)-y1(n+1)+(n+2)*y1(n+2)=0,
Let y2(0)=1, y2(1)=1, y2(2)=1/2, y2(3)=1/6, y2(4)=1/24,
Let -y2(n)-y2(n+4)+(n+5)*y2(n+5)=0,
Let y3(0)=1, y3(1)=1, y3(2)=1, y3(3)=2/3, y3(4)=5/12, y3(5)=5/12, y3(6)=11/36, y3(7)=31/126, y3(8)=307/2016, y3(9)=1643/18144,
Let -y3(n)-y3(n+5)-y3(n+8)-y3(n+9)+(n+10)*y3(n+10)=0,
a(n) = 1+n!*(y3(n)-y2(n)-y1(n)).
(End)

A061125 Number of degree-n permutations of order exactly 12.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 420, 3360, 30240, 403200, 4019400, 80166240, 965284320, 12173441280, 162850287600, 2428557331200, 32123543612160, 534678700308480, 8126981741380320, 128338880777251200, 2080312367956502400, 36351373041072122880, 606331931399062693440
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nn=21;Range[0,nn]!CoefficientList[Series[(Exp[x^12/12]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6]+(Exp[x^6/6]-1)(Exp[x^4/4]-1)Exp[x+x^2/2+x^3/3]+(Exp[x^4/4]-1)(Exp[x^3/3]-1)Exp[x^2/2+x],{x,0,nn}],x]//Rest  (* Geoffrey Critzer, Feb 04 2013 *)

Formula

E.g.f.: exp(x + 1/2*x^2) - exp(x + 1/2*x^2 + 1/4*x^4) - exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) + exp(x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 + 1/6*x^6 + 1/12*x^12).

A061126 Number of degree-n permutations of order exactly 16.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1307674368000, 22230464256000, 400148356608000, 5068545850368000, 101370917007360000, 1490152480008192000, 24977793950613504000, 343667682838351872000
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) + exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8 + 1/16*x^16).

A061127 Number of degree-n permutations of order exactly 24.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1663200, 19958400, 259459200, 4843238400, 72648576000, 988020633600, 14600749363200, 224704121241600, 3614691131251200, 84808750650624000, 1509309706083379200, 29359195162807910400
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nn=22;Range[0,nn]!CoefficientList[Series[(Exp[x^24/24]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6+x^8/8+x^12/12]+(Exp[x^12/12]-1)(Exp[x^8/8]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6]+(Exp[x^8/8]-1)(Exp[x^6/6]-1)Exp[x+x^2/2+x^3/3+x^4/4]+(Exp[x^8/8]-1)(Exp[x^3/3]-1)Exp[x+x^2/2+x^4/4],{x,0,nn}],x]//Rest (* Geoffrey Critzer, Feb 04 2013 *)

Formula

E.g.f.: exp(x + 1/2*x^2 + 1/4*x^4) - exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) - exp(x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 + 1/6*x^6 + 1/12*x^12) + exp(x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 + 1/6*x^6 + 1/8*x^8 + 1/12*x^12 + 1/24*x^24).
Previous Showing 41-50 of 51 results. Next