A061131
Number of degree-n even permutations of order dividing 8.
Original entry on oeis.org
1, 1, 1, 1, 4, 16, 136, 736, 4096, 20224, 326656, 2970496, 33826816, 291237376, 2129910784, 13607197696, 324498374656, 4599593353216, 52741679343616, 495632154179584, 7127212838772736, 94268828128854016, 2098358019107700736, 34030412427789500416
Offset: 0
- J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).
- Alois P. Heinz, Table of n, a(n) for n = 0..502
- Lev Glebsky, Melany Licón, Luis Manuel Rivera, On the number of even roots of permutations, arXiv:1907.00548 [math.CO], 2019.
- T. Koda, M. Sato, Y. Tskegahara, 2-adic properties for the numbers of involutions in the alternating groups, J. Algebra Appl. 14 (2015), no. 4, 1550052 (21 pages).
Cf.
A000085,
A001470,
A001472,
A052501,
A053496-
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129-
A061132,
A048099,
A051695,
A061133-
A061135.
A061140
Number of degree-n odd permutations of order exactly 8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 5040, 45360, 226800, 831600, 9979200, 103783680, 2058376320, 23870246400, 265686220800, 2477893017600, 47031546481920, 656384611034880, 11972743148620800, 165640695384729600, 1969108505560627200
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A061130
Number of degree-n even permutations of order dividing 6.
Original entry on oeis.org
1, 1, 1, 3, 12, 36, 126, 666, 6588, 44892, 237996, 2204676, 26370576, 219140208, 1720782792, 19941776856, 234038005776, 2243409386256, 23225205107088, 295070141019312, 4303459657780416, 55200265166477376, 660776587455193056
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A061134
Number of degree-n even permutations of order exactly 8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 226800, 2494800, 29937600, 259459200, 1816214400, 10897286400, 301491590400, 4419628012800, 51209462304000, 482551041772800, 6979977625420800, 92611036249804800, 2078225819199129600
Offset: 1
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A061137
Number of degree-n odd permutations of order dividing 6.
Original entry on oeis.org
0, 0, 1, 3, 6, 30, 270, 1386, 6048, 46656, 387180, 2469060, 17204616, 158065128, 1903506696, 18887563800, 163657221120, 2095170230016, 30792968596368, 346564643468976, 3905503235814240, 58609511127871200, 866032039742528736
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496-
A053505,
A001189,
A001471,
A001473,
A061121-
A061128,
A000704,
A061129-
A061132,
A048099,
A051695,
A061133-
A061135,
A001465,
A061136-
A061140.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3)*Sinh(x^2/2 + x^6/6) )); [0,0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Jul 02 2019
-
Egf:= exp(x + x^3/3)*sinh(x^2/2 + x^6/6):
S:= series(Egf,x,31):
seq(coeff(S,x,j)*j!,j=0..30); # Robert Israel, Jul 13 2018
-
With[{m=30}, CoefficientList[Series[Exp[x + x^3/3]*Sinh[x^2/2 + x^6/6], {x, 0, m}], x]*Range[0,m]!] (* Vincenzo Librandi, Jul 02 2019 *)
-
my(x='x+O('x^30)); concat([0,0], Vec(serlaplace( exp(x + x^3/3)*sinh(x^2/2 + x^6/6) ))) \\ G. C. Greubel, Jul 02 2019
-
m = 30; T = taylor(exp(x + x^3/3)*sinh(x^2/2 + x^6/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019
A051685
Auxiliary sequence for calculation of number of even permutations of degree n and order exactly 4.
Original entry on oeis.org
0, 0, 0, -6, -30, 0, 420, 2100, 6804, -20160, -376200, -2102760, -6606600, 53237184, 965306160, 5941244400, 12774059760, -305998041600, -5264368533216, -33983490935520, -16008359119200, 3139364813249280, 52132631033313600, 341037535726730304, -715693892444414400
Offset: 1
- V. Jovovic, Some combinatorial characteristics of symmetric and alternating groups (in Russian), Belgrade, 1980, unpublished.
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 05 2003
A061138
Number of degree-n odd permutations of order exactly 4.
Original entry on oeis.org
0, 0, 0, 0, 6, 30, 90, 210, 1680, 12096, 114660, 833580, 5928120, 38112360, 259194936, 1739195640, 17043237120, 167089937280, 1837707369840, 18342985021776, 181206905922720, 1673742164139360, 16992525855006240
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135,
A001465,
A061136 -
A061140.
A061139
Number of degree-n odd permutations of order exactly 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 20, 240, 1260, 5600, 45360, 383040, 2451680, 17128320, 157769040, 1902380480, 18882623760, 163633317120, 2095059774080, 30792478993920, 346562329685760, 3905491275514880, 58609449249207360, 866031730098205440
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135,
A001465,
A061136 -
A061140.
A061122
Number of degree-n permutations of order exactly 8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 5040, 45360, 453600, 3326400, 39916800, 363242880, 3874590720, 34767532800, 567177811200, 6897521030400, 98241008785920, 1138935652807680, 18952720774041600, 258251731634534400
Offset: 1
A061123
Number of degree-n permutations of order exactly 9.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 40320, 403200, 2217600, 26611200, 259459200, 1695133440, 16345929600, 161902540800, 1208560953600, 50830132953600, 866513503215360, 8470676211379200, 166891791625977600, 2699606616475507200
Offset: 1