A155563 Intersection of A001481 and A003136: N = a^2 + b^2 = c^2 + 3d^2 for some integers a,b,c,d.
0, 1, 4, 9, 13, 16, 25, 36, 37, 49, 52, 61, 64, 73, 81, 97, 100, 109, 117, 121, 144, 148, 157, 169, 181, 193, 196, 208, 225, 229, 241, 244, 256, 277, 289, 292, 313, 324, 325, 333, 337, 349, 361, 373, 388, 397, 400, 409, 421, 433, 436, 441, 457, 468, 481, 484
Offset: 1
Links
- Ron Lifshitz, Theory of color symmetry for periodic and quasiperiodic crystals, Rev. Mod. Phys. 69, 1181 (1997). This sequence coincides with the row N = 12 of Table VII.
Programs
-
PARI
isA155563(n,/* use optional 2nd arg to get other analogous sequences */c=[3,1]) = { for(i=1,#c, for(b=0,sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1} for( n=0,500, isA155563(n) & print1(n","))
-
PARI
is(n)=(n==0) || (#bnfisintnorm(bnfinit(z^2+z+1), n) && #bnfisintnorm(bnfinit(z^2+1), n)); select(n->is(n), vector(1500,j,j-1)) \\ Joerg Arndt, Jan 11 2015
-
Python
from itertools import count, islice from sympy import factorint def A155563_gen(): # generator of terms return filter(lambda n: all(e & 1 == 0 or (p & 3 != 3 and p % 3 < 2) for p, e in factorint(n).items()),count(0)) A155563_list = list(islice(A155563_gen(),30)) # Chai Wah Wu, Jun 27 2022
Comments