cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 100 results. Next

A074550 a(n) = 3^n + 4^n + 8^n.

Original entry on oeis.org

3, 15, 89, 603, 4433, 34035, 266969, 2115723, 16849313, 134499555, 1074849449, 8594306043, 68736785393, 549824517075, 4398319729529, 35185460179563, 281479314724673, 2251817122694595, 18014467616379209, 144115464116024283
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [3^n + 4^n + 8^n: n in [0..30]]; // Vincenzo Librandi, Jun 13 2011
  • Mathematica
    Table[3^n + 4^n + 8^n, {n, 0, 20}]

Formula

From Mohammad K. Azarian, Dec 28 2008: (Start)
G.f.: 1/(1-3*x) + 1/(1-4*x) + 1/(1-8*x).
E.g.f.: exp(3*x) + exp(4*x) + exp(8*x). (End)
a(n) = 15*a(n-1) - 68*a(n-2) + 96*a(n-3).

A074551 a(n) = 3^n + 4^n + 9^n.

Original entry on oeis.org

3, 16, 106, 820, 6898, 60316, 536266, 4801540, 43118818, 387702316, 3487892026, 31385431060, 282446845138, 2541934531516, 22877065673386, 205892220185380, 1853024526865858, 16677199008675916, 150094704403896346
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [3^n + 4^n + 9^n: n in [0..30]]; // Vincenzo Librandi, Jun 13 2011
  • Mathematica
    Table[3^n + 4^n + 9^n, {n, 0, 20}]

Formula

From Mohammad K. Azarian, Dec 28 2008: (Start)
G.f.: 1/(1-3*x) + 1/(1-4*x) + 1/(1-9*x).
E.g.f.: exp(3*x) + exp(4*x) + exp(9*x). (End)
a(n) = 16*a(n-1) - 75*a(n-2) + 108*a(n-3).

A074552 a(n) = 3^n + 5^n + 7^n.

Original entry on oeis.org

3, 15, 83, 495, 3107, 20175, 134003, 903855, 6161987, 42326415, 292299923, 2026332015, 14085959267, 98111307855, 684331371443, 4778093436975, 33385561506947, 233393582580495, 1632228682596563, 11417969833962735
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [3^n + 5^n + 7^n: n in [0..30]]; // Vincenzo Librandi, Jun 13 2011
  • Mathematica
    Table[3^n + 5^n + 7^n, {n, 0, 20}]
    LinearRecurrence[{15,-71,105},{3,15,83},20] (* Harvey P. Dale, Jul 16 2020 *)

Formula

From Mohammad K. Azarian, Dec 30 2008: (Start)
G.f.: 1/(1-3*x) + 1/(1-5*x) + 1/(1-7*x).
E.g.f.: exp(3*x) + exp(5*x) + exp(7*x). (End)
a(n) = 15*a(n-1) - 71*a(n-2) + 105*a(n-3).

A074553 a(n) = 3^n + 5^n + 8^n.

Original entry on oeis.org

3, 16, 98, 664, 4802, 36136, 278498, 2177464, 17174402, 136190536, 1083566498, 8638939864, 68964148802, 550978111336, 4404154809698, 35214904015864, 281627607648002, 2252562882278536, 18018213594168098, 144134262724445464
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [3^n + 5^n + 8^n: n in [0..30]]; // Vincenzo Librandi, Jun 13 2011
  • Mathematica
    Table[3^n + 5^n + 8^n, {n, 0, 20}]

Formula

From Mohammad K. Azarian, Dec 30 2008: (Start)
G.f.: 1/(1-3*x) + 1/(1-5*x) + 1/(1-8*x).
E.g.f.: exp(3*x) + exp(5*x) + exp(8*x). (End)
a(n) = 16*a(n-1) - 79*a(n-2) + 120*a(n-3).

A074554 a(n) = 3^n + 5^n + 9^n.

Original entry on oeis.org

3, 17, 115, 881, 7267, 62417, 547795, 4863281, 43443907, 389393297, 3496609075, 31430064881, 282674208547, 2543088125777, 22882900753555, 205921664021681, 1853172819789187, 16677944768259857, 150098450381685235
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [3^n + 5^n + 9^n: n in [0..30]]; // Vincenzo Librandi, Jun 13 2011
  • Mathematica
    Table[3^n + 5^n + 9^n, {n, 0, 20}]
    LinearRecurrence[{17,-87,135},{3,17,115},30] (* Harvey P. Dale, Nov 27 2012 *)

Formula

From Mohammad K. Azarian, Dec 30 2008: (Start)
G.f.: 1/(1-3*x) + 1/(1-5*x) + 1/(1-9*x).
E.g.f.: exp(3*x) + exp(5*x) + exp(9*x). (End)
a(n) = 17*a(n-1) - 87*a(n-2) + 135*a(n-3).

A074555 a(n) = 3^n + 6^n + 7^n.

Original entry on oeis.org

3, 16, 94, 586, 3778, 24826, 165034, 1105666, 7450978, 50450986, 343000474, 2340300946, 16018600978, 109951298746, 756592019914, 5217760843426, 36054083523778, 249557302572106, 1729973941999354, 12008256087645106
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [3^n + 6^n + 7^n: n in [0..20]]; // Vincenzo Librandi, Aug 24 2011
  • Mathematica
    Table[3^n + 6^n + 7^n, {n, 0, 20}]

Formula

From Mohammad K. Azarian, Dec 30 2008: (Start)
G.f.: 1/(1-3*x) + 1/(1-6*x) + 1/(1-7*x).
E.g.f.: exp(3*x) + exp(6*x) + exp(7*x). (End)

A074556 a(n) = 3^n + 6^n + 8^n.

Original entry on oeis.org

3, 17, 109, 755, 5473, 40787, 309529, 2379275, 18463393, 144315107, 1134267049, 8952908795, 70896790513, 562818102227, 4476415458169, 35654571422315, 284296129664833, 2268726602270147, 18115958853570889, 144724548978127835
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [3^n + 6^n + 8^n: n in [0..20]]; // Vincenzo Librandi, May 20 2011
  • Mathematica
    Table[3^n + 6^n + 8^n, {n, 0, 20}]
    LinearRecurrence[{17,-90,144},{3,17,109},21] (* Harvey P. Dale, May 19 2011 *)

Formula

From Mohammad K. Azarian, Dec 30 2008: (Start)
G.f.: 1/(1-3*x) + 1/(1-6*x) + 1/(1-8*x).
E.g.f.: e^(3*x) + e^(6*x) + e^(8*x). (End)
a(n) = 17*a(n-1) - 90*a(n-2) + 144*a(n-3); a(0)=3, a(1)=17, a(2)=109. - Harvey P. Dale, May 19 2011

A074557 3^n + 6^n + 9^n.

Original entry on oeis.org

3, 18, 126, 972, 7938, 67068, 578826, 5065092, 44732898, 397517868, 3547309626, 31744033812, 284606850258, 2554928116668, 22955161402026, 206361331428132, 1855841341806018, 16694108488251468, 150196195641088026
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [3^n + 6^n + 9^n: n in [0..20]]; // Vincenzo Librandi, Aug 24 2011
  • Mathematica
    Table[3^n + 6^n + 9^n, {n, 0, 20}]

Formula

G.f.: 1/(1-3*x)+1/(1-6*x)+1/(1-9*x). E.g.f.: exp(3*x)+exp(6*x)+exp(9*x). [From Mohammad K. Azarian, Dec 30 2008]

A074558 a(n) = 3^n + 7^n + 8^n.

Original entry on oeis.org

3, 18, 122, 882, 6578, 49818, 380522, 2922882, 22548578, 174591018, 1356276122, 10567438482, 82561295378, 646646418618, 5076274366922, 39931947947682, 314707950326978, 2484430456812618, 19642812494812922, 155514084423490482
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [3^n + 7^n + 8^n: n in [0..20]]; // Vincenzo Librandi, Aug 24 2011
  • Mathematica
    Table[3^n + 7^n + 8^n, {n, 0, 20}]
    LinearRecurrence[{18,-101,168},{3,18,122},20] (* Harvey P. Dale, Jan 21 2024 *)

Formula

From Mohammad K. Azarian, Dec 30 2008: (Start)
G.f.: 1/(1-3*x) + 1/(1-7*x) + 1/(1-8*x).
E.g.f.: exp(3*x) + exp(7*x) + exp(8*x). (End)

A074559 a(n) = 3^n + 7^n + 9^n.

Original entry on oeis.org

3, 19, 139, 1099, 9043, 76099, 649819, 5608699, 48818083, 427793779, 3769318699, 33358563499, 296271355123, 2638756433059, 23555020310779, 210638707953499, 1886253162468163, 16909812342793939, 151723049282330059
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [3^n + 7^n + 9^n: n in [0..20]]; // Vincenzo Librandi, Aug 24 2011
  • Mathematica
    Table[3^n + 7^n + 9^n, {n, 0, 20}]

Formula

From Mohammad K. Azarian, Dec 30 2008: (Start)
G.f.: 1/(1-3*x) + 1/(1-7*x) + 1/(1-9*x).
E.g.f.: exp(3*x) + exp(7*x) + exp(9*x). (End)
a(n) = 19*a(n-1) - 111*a(n-2) + 189*a(n-3). - Wesley Ivan Hurt, Apr 11 2023
Previous Showing 51-60 of 100 results. Next