cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A231604 Numbers n such that (42^n + 1)/43 is prime.

Original entry on oeis.org

3, 709, 1637, 17911, 127609, 172663
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Comments

The first 5 terms are primes.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (42^p + 1)/43 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((42^n+1)/43) \\ Charles R Greathouse IV, Feb 20 2017

Extensions

a(5)=127609 corresponds to a probable prime discovered by Paul Bourdelais, Jul 02 2018
a(6)=172663 corresponds to a probable prime discovered by Paul Bourdelais, Jul 29 2019

A054416 Numbers k such that 9090...9091 (with k-1 copies of 90 and one copy of 91) is prime.

Original entry on oeis.org

2, 3, 9, 15, 26, 33, 146, 320, 1068, 1505, 134103, 800393
Offset: 1

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 22 2000

Keywords

Comments

Numbers k such that 10*(10^(2k)-1)/11 + 1 is prime.

Examples

			The first 3 numbers are 9091, 909091, 909090909090909091.
		

References

  • J. A. H. Hunter and J. S. Madachy, Mathematical Diversions, New York: Dover Publications, Inc., 1974, pp. 4-5. Originally published by Van Nostrand, 1963.

Crossrefs

Cf. A001562.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 10*(10^(2n) - 1)/11 + 1], Print[ n ] ], {n, 0, 1505} ]
    Position[Table[FromDigits[PadLeft[{9,1},2n,{9,0}]],{n,1510}], ?PrimeQ]// Flatten (* _Harvey P. Dale, Nov 02 2017 *)
  • Python
    from sympy import isprime, prime
    def afind(limit, startk=1):
        s = "90"*(startk-1)
        for k in range(startk, limit+1):
            if isprime(int(s+"91")):
                print(k, end=", ")
            s += "90"
    afind(400) # Michael S. Branicky, Jan 13 2022

Formula

a(n) = (A001562(n)-1)/2.

Extensions

More terms from Michael Kleber and Harvey Dubner (harvey(AT)dubner.com), May 22 2000
Ignacio Larrosa CaƱestro reports that the 1068 term has now been established to be a prime using Titanix 1.01, Oct 23 2000
a(11)-a(12) from Michael S. Branicky, Jan 13 2022 using A001562

A231865 Numbers n such that (43^n + 1)/44 is prime.

Original entry on oeis.org

5, 7, 19, 251, 277, 383, 503, 3019, 4517, 9967, 29573
Offset: 1

Views

Author

Robert Price, Nov 14 2013

Keywords

Comments

All terms are primes.
a(11) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (43^p + 1)/44 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((43^n+1)/44) \\ Charles R Greathouse IV, Feb 20 2017

A235683 Numbers n such that (46^n + 1)/47 is prime.

Original entry on oeis.org

7, 23, 59, 71, 107, 223, 331, 2207, 6841, 94841
Offset: 1

Views

Author

Robert Price, Jan 13 2014

Keywords

Comments

All terms up to a(10) are primes.
a(11) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (46^p + 1)/47 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((46^n+1)/47) \\ Charles R Greathouse IV, May 22 2017

A237052 Numbers n such that (49^n + 1)/50 is prime.

Original entry on oeis.org

7, 19, 37, 83, 1481, 12527, 20149
Offset: 1

Views

Author

Robert Price, Feb 02 2014

Keywords

Comments

All terms are primes.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (49^p + 1)/50 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((49^n+1)/50) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Typo in description corrected by Ray Chandler, Feb 20 2017

A309533 Numbers k such that (144^k + 1)/145 is prime.

Original entry on oeis.org

23, 41, 317, 3371, 45259, 119671
Offset: 1

Views

Author

Paul Bourdelais, Aug 06 2019

Keywords

Comments

The corresponding primes are terms of A059055. - Bernard Schott, Aug 09 2019

Crossrefs

Programs

  • Mathematica
    Do[p=Prime[n]; If[PrimeQ[(144^p + 1)/145], Print[p]], {n, 1, 1000000}]
  • PARI
    is(n)=ispseudoprime((144^n+1)/145)

A236167 Numbers k such that (47^k + 1)/48 is prime.

Original entry on oeis.org

5, 19, 23, 79, 1783, 7681
Offset: 1

Views

Author

Robert Price, Jan 19 2014

Keywords

Comments

a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (47^p + 1)/48 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((47^n+1)/48) \\ Charles R Greathouse IV, Jun 06 2017
    
  • Python
    from sympy import isprime
    def afind(startat=0, limit=10**9):
      pow47 = 47**startat
      for k in range(startat, limit+1):
        q, r = divmod(pow47+1, 48)
        if r == 0 and isprime(q): print(k, end=", ")
        pow47 *= 47
    afind(limit=300) # Michael S. Branicky, May 19 2021

A185230 Numbers n such that (33^n + 1)/34 is prime.

Original entry on oeis.org

5, 67, 157, 12211, 313553
Offset: 1

Views

Author

Robert Price, Aug 29 2013

Keywords

Comments

All terms are prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (33^p + 1)/34 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((33^n+1)/34) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(5) from Paul Bourdelais, Feb 26 2021

A215804 Odd numbers k such that 10^k + 1 can be written in the form a^2 + 2*b^2.

Original entry on oeis.org

1, 5, 7, 13, 19, 25, 29, 31, 35, 43, 53, 61, 65, 67, 71, 95, 125, 145, 155, 175, 179, 215, 239, 263, 265, 269, 293, 305
Offset: 1

Views

Author

V. Raman, Aug 23 2012

Keywords

Comments

These 10^k + 1 numbers have no prime factors of the form 5 or 7 (mod 8) to an odd power.

Crossrefs

Programs

  • PARI
    for(i=2, 100, a=factorint(10^i+1)~; has=0; for(j=1, #a, if(a[1, j]%8>4&&a[2, j]%2==1, has=1; break)); if(has==0&&i%2==1, print(i" -\t"a[1, ])))

Extensions

12 more terms from V. Raman, Aug 28 2012

A215805 Prime numbers p such that 10^p + 1 can be written in the form a^2 + 2*b^2.

Original entry on oeis.org

5, 7, 13, 19, 29, 31, 43, 53, 61, 67, 71, 179, 239, 263, 269, 293
Offset: 1

Views

Author

V. Raman, Aug 23 2012

Keywords

Comments

These numbers have no prime factors of the form 5 or 7 (mod 8) to an odd power.

Crossrefs

Programs

  • PARI
    forprime(i=2, 100, a=factorint(10^i+1)~; has=0; for(j=1, #a, if(a[1, j]%8>4&&a[2, j]%2==1, has=1; break)); if(has==0&&i%2==1, print(i" -\t"a[1, ])))

Extensions

5 more terms from V. Raman, Aug 29 2012
Previous Showing 11-20 of 26 results. Next