cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-76 of 76 results.

A168514 Number of prime divisors (counted with multiplicity) of Fibonacci(n)+1.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 4, 2, 4, 5, 2, 4, 3, 3, 4, 3, 3, 8, 4, 2, 4, 5, 3, 5, 5, 5, 4, 4, 2, 6, 6, 2, 7, 9, 4, 6, 5, 4, 6, 5, 4, 12, 4, 4, 6, 5, 5, 7, 6, 6, 7, 6, 4, 10, 6, 2, 7, 9, 4, 6, 5, 4, 6, 7, 6, 13, 7, 4, 7, 7, 5, 8, 5, 8, 6, 4, 5, 10, 8, 4, 7, 11, 5, 8, 9, 7, 8, 6, 4, 15, 5, 3, 7, 10, 7, 8, 7, 8
Offset: 1

Views

Author

Jason Earls, Nov 28 2009

Keywords

Comments

Always greater than 1 for any n >= 4.

References

  • Jason Earls, "Fibonacci," Mathematical Bliss, Pleroma Publications, 2009, pages 60-64. ASIN: B002ACVZ6O

Crossrefs

Programs

Formula

a(n) = Omega(Fibonacci(n) + 1) = A001222(A001611(n)). - Wesley Ivan Hurt, Feb 04 2014

A187891 a(0)=0, a(1)=5, a(n)=a(n-1)+a(n-2)-1.

Original entry on oeis.org

0, 5, 4, 8, 11, 18, 28, 45, 72, 116, 187, 302, 488, 789, 1276, 2064, 3339, 5402, 8740, 14141, 22880, 37020, 59899, 96918, 156816, 253733, 410548, 664280, 1074827, 1739106, 2813932, 4553037, 7366968, 11920004, 19286971, 31206974, 50493944, 81700917
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{a=0,b=5},Table[c=a+b-1;a=b;b=c,{n,100}]]
    nxt[{a_,b_}]:={b,a+b-1}; NestList[nxt,{0,5},40][[All,1]] (* Harvey P. Dale, Nov 03 2022 *)

Formula

a(n) = 1+A022120(n-2), n>2. - R. J. Mathar, Mar 15 2011
G.f.: -x^2*(-5+6*x) / ( (x-1)*(x^2+x-1) ). - R. J. Mathar, Mar 15 2011

A373889 Square array read by ascending antidiagonals: T(k,n) is the cardinality of {(E is a proper finite subset of the natural numbers) such that E = {} or w_k(E) < min(E) <= max(E) <= n}, where w_k(E) = Sum_{i in E, i <> k} 1, with n, k >= 1.

Original entry on oeis.org

2, 1, 3, 1, 2, 4, 1, 2, 4, 6, 1, 2, 4, 7, 9, 1, 2, 3, 6, 11, 14, 1, 2, 3, 6, 10, 17, 22, 1, 2, 3, 5, 10, 17, 26, 35, 1, 2, 3, 5, 10, 16, 28, 40, 56, 1, 2, 3, 5, 8, 16, 26, 45, 62, 90, 1, 2, 3, 5, 8, 16, 26, 43, 71, 97, 145, 1, 2, 3, 5, 8, 13, 26, 42, 71, 111, 153, 234
Offset: 1

Views

Author

Paolo Xausa, Jun 21 2024

Keywords

Examples

			The array begins:
  k\n|  1  2  3  4   5   6   7   8   9   10  ...
  ----------------------------------------------
   1 |  2, 3, 4, 6,  9, 14, 22, 35, 56,  90, ... = A001611 (from n = 2).
   2 |  1, 2, 4, 7, 11, 17, 26, 40, 62,  97, ...
   3 |  1, 2, 4, 6, 10, 17, 28, 45, 71, 111, ...
   4 |  1, 2, 3, 6, 10, 16, 26, 43, 71, 116, ...
   5 |  1, 2, 3, 5, 10, 16, 26, 42, 68, 111, ...
   6 |  1, 2, 3, 5,  8, 16, 26, 42, 68, 110, ...
   7 |  1, 2, 3, 5,  8, 13, 26, 42, 68, 110, ...
   8 |  1, 2, 3, 5,  8, 13, 21, 42, 68, 110, ...
   9 |  1, 2, 3, 5,  8, 13, 21, 34, 68, 110, ...
  10 |  1, 2, 3, 5,  8, 13, 21, 34, 55, 110, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    A373889[k_, n_] := Which[n < k, Fibonacci[n+1], k == 1, Fibonacci[n-k+2] + 1, True, 2*Sum[Binomial[n-k, i]*Fibonacci[k-i], {i, 0, k-2}] + 2*Binomial[n-k, k-1] + Sum[Binomial[j, n-j], {j, n-k}]];
    Table[A373889[k-n+1, n], {k, 15}, {n, k}]

Formula

T(k,n) = A000045(n-k+2) + 1, for k = 1 and n >= k;
T(k,n) = 2*(Sum_{i=0..k-2} binomial(n-k,i)*A000045(k-i)) + 2*binomial(n-k,k-1) + Sum_{j=1..n-k} binomial(j,n-j), for k >= 2 and n >= k;
T(k,n) = A000045(n+1) otherwise.
T(n,n) = 2*A000045(n).

A374440 Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with boundary conditions: if k = 0 or k = 2 then T = 1; if k = 1 then T = n - 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 3, 1, 1, 1, 1, 4, 1, 3, 2, 0, 1, 5, 1, 6, 3, 1, 1, 1, 6, 1, 10, 4, 4, 3, 0, 1, 7, 1, 15, 5, 10, 6, 1, 1, 1, 8, 1, 21, 6, 20, 10, 5, 4, 0, 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1, 1, 10, 1, 36, 8, 56, 21, 35, 20, 6, 5, 0
Offset: 0

Views

Author

Peter Luschny, Jul 21 2024

Keywords

Comments

Member of the family of Lucas-Fibonacci polynomials.

Examples

			Triangle starts:
  [ 0]  1;
  [ 1]  1,  0;
  [ 2]  1,  1,  1;
  [ 3]  1,  2,  1,  0;
  [ 4]  1,  3,  1,  1,  1;
  [ 5]  1,  4,  1,  3,  2,  0;
  [ 6]  1,  5,  1,  6,  3,  1,  1;
  [ 7]  1,  6,  1, 10,  4,  4,  3,  0;
  [ 8]  1,  7,  1, 15,  5, 10,  6,  1,  1;
  [ 9]  1,  8,  1, 21,  6, 20, 10,  5,  4,  0;
  [10]  1,  9,  1, 28,  7, 35, 15, 15, 10,  1, 1;
		

Crossrefs

Cf. A374441.
Cf. A000032 (Lucas), A001611 (even sums, Fibonacci + 1), A000071 (odd sums, Fibonacci - 1), A001911 (alternating sums, Fibonacci(n+3) - 2), A025560 (row lcm), A073028 (row max), A117671 & A025174 (central terms), A057979 (subdiagonal), A000217 (column 3).

Programs

  • Maple
    T := proc(n, k) option remember; if k = 0 or k = 2 then 1 elif k > n then 0
    elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..9);
    T := (n, k) -> ifelse(k = 0, 1, binomial(n - floor(k/2), ceil(k/2)) -
    binomial(n - ceil((k + irem(k + 1, 2))/2), floor(k/2))):

Formula

T(n, k) = binomial(n - floor(k/2), ceiling(k/2)) - binomial(n - ceiling((k + even(k))/2), floor(k/2)) if k > 0, T(n, 0) = 1, where even(k) = 1 if k is even, otherwise 0.
Columns with odd index agree with the odd indexed columns of A374441.

A052660 E.g.f. (2-2x-x^2)/((1-x)(1-x-x^2)).

Original entry on oeis.org

2, 2, 6, 24, 144, 1080, 10080, 110880, 1411200, 20321280, 326592000, 5787936000, 112086374400, 2353813862400, 53265935923200, 1291982275584000, 33434618241024000, 919452001628160000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Union(Sequence(Z),Sequence(Union(Z,Prod(Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

E.g.f.: -(-2+x^2+2*x)/(-1+x)/(-1+x+x^2)
Recurrence: {a(1)=2, a(2)=6, a(0)=2, (n^3+6*n^2+11*n+6)*a(n)+(-2*n-6)*a(n+2)+a(n+3)=0}
(1+Sum(1/5*(1+2*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z+_Z^2)))*n!
a(n) = n!*A001611(n+1). - R. J. Mathar, Nov 27 2011

A187892 a(0)=0, a(1)=6, a(n)=a(n-1)+a(n-2)-1.

Original entry on oeis.org

0, 6, 5, 10, 14, 23, 36, 58, 93, 150, 242, 391, 632, 1022, 1653, 2674, 4326, 6999, 11324, 18322, 29645, 47966, 77610, 125575, 203184, 328758, 531941, 860698, 1392638, 2253335, 3645972, 5899306, 9545277, 15444582, 24989858, 40434439, 65424296, 105858734
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{a=0,b=6},Table[c=a+b-1;a=b;b=c,{n,100}]]
    LinearRecurrence[{2,0,-1},{0,6,5},40] (* Harvey P. Dale, Aug 17 2019 *)

Formula

G.f.: -x^2*(-6+7*x) / ( (x-1)*(x^2+x-1) ). - R. J. Mathar, Mar 15 2011
a(n) = 1+A022130(n-3), n>2. - R. J. Mathar, Mar 15 2011
Previous Showing 71-76 of 76 results.