cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 324 results. Next

A291126 Psibonacci numbers: solutions n of the equation psi(n) = psi(n-1) + psi(n-2), where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

3, 6, 210, 88200, 101970, 193290, 289680, 993990, 11264550, 59068230, 72776970, 98746230, 122460690, 126500910, 132766770, 234150930, 514442214, 531391650, 638082390, 650428020, 790769790, 1249160790, 3727074450, 4775972850, 8299675650, 9530202210
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2017

Keywords

Comments

Analogous to phibonacci numbers (A065557) and other sequences (see crossrefs).

Examples

			psi(210) = 576 = 240 + 336 = psi(209) + psi(208), therefore 210 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    psi[n_]:=If[n < 1, 0, n Sum[ MoebiusMu[ d]^2 / d, {d, Divisors @ n}]];
    Select[Range[10^6], psi[#]==psi[#-1]+psi[#-2] &]

Extensions

a(21)-a(26) from Giovanni Resta, Aug 26 2018

A323364 Sum of Dedekind's psi, A001615, and its Dirichlet inverse, A323363.

Original entry on oeis.org

2, 0, 0, 9, 0, 24, 0, 9, 16, 36, 0, 12, 0, 48, 48, 27, 0, 24, 0, 18, 64, 72, 0, 60, 36, 84, 32, 24, 0, 0, 0, 45, 96, 108, 96, 84, 0, 120, 112, 90, 0, 0, 0, 36, 48, 144, 0, 84, 64, 72, 144, 42, 0, 120, 144, 120, 160, 180, 0, 216, 0, 192, 64, 99, 168, 0, 0, 54, 192, 0, 0, 132, 0, 228, 96, 60, 192, 0, 0, 126, 112, 252, 0, 288, 216, 264, 240, 180, 0
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Crossrefs

Programs

A342458 a(n) = gcd(A001615(n), A003415(n)), where A001615 is Dedekind psi, and A003415 is the arithmetic derivative of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 12, 6, 1, 1, 8, 1, 3, 8, 8, 1, 3, 1, 12, 2, 1, 1, 4, 10, 3, 9, 16, 1, 1, 1, 16, 2, 1, 12, 12, 1, 3, 8, 4, 1, 1, 1, 24, 3, 1, 1, 16, 14, 45, 4, 28, 1, 27, 8, 4, 2, 1, 1, 4, 1, 3, 3, 96, 6, 1, 1, 36, 2, 1, 1, 12, 1, 3, 5, 40, 6, 1, 1, 16, 108, 1, 1, 4, 2, 3, 8, 4, 1, 3, 4, 48, 2, 1, 24, 16, 1, 7, 3, 20
Offset: 1

Views

Author

Antti Karttunen, Mar 28 2021

Keywords

Crossrefs

Cf. A301939 (gives the positions at which a(n) = A001615(n) = A003415(n)).
Cf. also A175732, A342413, A342915.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342458(n) = gcd(A001615(n), A003415(n));

Formula

a(n) = gcd(A001615(n), A003415(n)).
a(n) = A003557(n) * A342459(n).
a(n) = A003415(n) / A342919(n).

A342915 a(n) = gcd(1+n, A001615(n)), where A001615 is Dedekind psi, n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 3, 4, 1, 6, 1, 8, 3, 2, 1, 12, 1, 14, 3, 8, 1, 18, 1, 20, 3, 2, 1, 24, 1, 2, 3, 4, 1, 30, 1, 32, 3, 2, 1, 12, 1, 38, 3, 8, 1, 42, 1, 44, 9, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 60, 1, 62, 3, 32, 1, 6, 1, 68, 3, 2, 1, 72, 1, 74, 3, 4, 1, 6, 1, 80, 9, 2, 1, 84, 1, 2, 3, 8, 1, 90, 1, 4, 3, 2, 1, 24, 1, 98, 3, 4, 1, 102
Offset: 1

Views

Author

Antti Karttunen, Mar 29 2021

Keywords

Crossrefs

Cf. also A049559, A342458.
After n=1 differs from A143771 for the first time at n=44, where a(44) = 9, while A143771(44) = 3.

Programs

  • Mathematica
    psi[n_] := If[n==1, 1, Times @@ ((#1+1)*#1^(#2-1)& @@@ FactorInteger[n])];
    a[n_] := GCD[n+1, psi[n]];
    Array[a, 105] (* Jean-François Alcover, Dec 22 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A342915(n) = gcd(1+n,A001615(n));

Formula

a(n) = gcd(1+n, A001615(n)).
a(n) = (1+n) / A342916(n) = A001615(n) / A342917(n).

A347132 a(n) = Sum_{d|n} A001615(n/d) * A003415(d), where A003415 is the arithmetic derivative and A001615 is Dedekind psi function.

Original entry on oeis.org

0, 1, 1, 7, 1, 12, 1, 30, 10, 16, 1, 65, 1, 20, 18, 104, 1, 83, 1, 93, 22, 28, 1, 254, 16, 32, 63, 121, 1, 167, 1, 320, 30, 40, 26, 391, 1, 44, 34, 374, 1, 215, 1, 177, 143, 52, 1, 840, 22, 165, 42, 205, 1, 450, 34, 494, 46, 64, 1, 827, 1, 68, 183, 912, 38, 311, 1, 261, 54, 295, 1, 1430, 1, 80, 197, 289, 38, 359
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Comments

Dirichlet convolution of Dedekind psi function (A001615) with the arithmetic derivative (A003415).

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, DirichletConvolve[j, MoebiusMu[j]^2, j, n/#]*If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &], {n, 78}] (* Michael De Vlieger, Oct 19 2021, after Jan Mangaldan at A001615 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A347132(n) = sumdiv(n,d,A001615(n/d)*A003415(d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A003415(d).

A348982 a(n) = Sum_{d|n} psi(n/d) * A322582(d), where psi is Dedekind psi (A001615), A322582(n) = n - A003958(n), and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 6, 1, 11, 1, 22, 9, 15, 1, 52, 1, 19, 17, 66, 1, 69, 1, 76, 21, 27, 1, 176, 15, 31, 51, 100, 1, 145, 1, 178, 29, 39, 25, 288, 1, 43, 33, 264, 1, 189, 1, 148, 123, 51, 1, 508, 21, 145, 41, 172, 1, 339, 33, 352, 45, 63, 1, 632, 1, 67, 159, 450, 37, 277, 1, 220, 53, 265, 1, 924, 1, 79, 175, 244, 37, 321
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A001615 with A322582.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)*p^(e - 1); psi[1] = 1; psi[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p - 1)^e; s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (# - s[#])*psi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348982(n) = sumdiv(n,d,A001615(n/d)*A322582(d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A322582(d).
For all n >= 1, a(n) <= A347132(n) <= A349142(n).
a(n) = A327251(n) - A349132(n). - Antti Karttunen, Nov 14 2021

A349132 a(n) = Sum_{d|n} psi(d) * A003958(n/d), where A003958 is fully multiplicative with a(p) = (p-1), and psi is Dedekind psi function, A001615.

Original entry on oeis.org

1, 4, 6, 10, 10, 24, 14, 22, 24, 40, 22, 60, 26, 56, 60, 46, 34, 96, 38, 100, 84, 88, 46, 132, 70, 104, 84, 140, 58, 240, 62, 94, 132, 136, 140, 240, 74, 152, 156, 220, 82, 336, 86, 220, 240, 184, 94, 276, 140, 280, 204, 260, 106, 336, 220, 308, 228, 232, 118, 600, 122, 248, 336, 190, 260, 528, 134, 340, 276, 560
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Dirichlet convolution of A003958 with Dedekind psi function, A001615.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)*p^e - p*(p - 1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A349132(n) = sumdiv(n,d,A001615(d)*A003958(n/d));

Formula

a(n) = Sum_{d|n} A001615(d) * A003958(n/d).
a(n) = A327251(n) - A348982(n).
For all n >= 1, a(n) <= A349172(n).
Multiplicative with a(p^e) = (p+1)*p^e - p*(p-1)^e. - Amiram Eldar, Nov 09 2021

A349142 a(n) = Sum_{d|n} psi(n/d) * A348507(d), where psi is Dedekind psi (A001615), A348507(n) = A003959(n) - n, and A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 8, 1, 13, 1, 40, 11, 17, 1, 80, 1, 21, 19, 164, 1, 99, 1, 112, 23, 29, 1, 364, 17, 33, 77, 144, 1, 191, 1, 604, 31, 41, 27, 528, 1, 45, 35, 524, 1, 243, 1, 208, 165, 53, 1, 1424, 23, 187, 43, 240, 1, 597, 35, 684, 47, 65, 1, 1072, 1, 69, 209, 2084, 39, 347, 1, 304, 55, 327, 1, 2244, 1, 81, 221, 336, 39, 399
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A001615 with A348507.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)*p^(e - 1); psi[1] = 1; psi[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p + 1)^e; s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (s[#] - #)*psi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    A349142(n) = sumdiv(n,d,A001615(d)*A348507(n/d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A348507(d).
For all n >= 1, a(n) >= A347132(n) >= A348982(n).
a(n) = A349172(n) - A327251(n). - Antti Karttunen, Nov 14 2021

A349172 a(n) = Sum_{d|n} psi(d) * A003959(n/d), where A003959 is fully multiplicative with a(p) = (p+1), and psi is Dedekind psi function, A001615.

Original entry on oeis.org

1, 6, 8, 24, 12, 48, 16, 84, 44, 72, 24, 192, 28, 96, 96, 276, 36, 264, 40, 288, 128, 144, 48, 672, 102, 168, 212, 384, 60, 576, 64, 876, 192, 216, 192, 1056, 76, 240, 224, 1008, 84, 768, 88, 576, 528, 288, 96, 2208, 184, 612, 288, 672, 108, 1272, 288, 1344, 320, 360, 120, 2304, 124, 384, 704, 2724, 336, 1152, 136
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Dirichlet convolution of A001615 with A003959.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 2)*(p + 1)^e - (p + 1)*p^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A349172(n) = sumdiv(n,d,A001615(d)*A003959(n/d));

Formula

a(n) = Sum_{d|n} A001615(d) * A003959(n/d).
a(n) = A327251(n) + A349142(n).
For all n >= 1, a(n) >= A349132(n).
Multiplicative with a(p^e) = (p+2)*(p+1)^e - (p+1)*p^e. - Amiram Eldar, Nov 09 2021

A295888 Filter combining prime signature of n (A101296) with Dedekind's psi (A001615).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 46, 42, 47, 48, 49, 42, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 56, 60, 63, 64, 65, 66, 67, 67, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 77
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2017

Keywords

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ This function from Charles R Greathouse IV, Sep 09 2014
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    Anotsubmitted8(n) = (1/2)*(2 + ((A046523(n)+A001615(n))^2) - A046523(n) - 3*A001615(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Anotsubmitted8(n))),"b295888.txt");

Formula

Restricted growth sequence transform of function f(n) = (1/2)*(2 + ((A046523(n) + A001615(n))^2) - A046523(n) - 3*A001615(n)), where values A046523(n) and A001615(n) are packed together to a(n) with the 2-argument form of A000027, also known as Cantor pairing-function.
Previous Showing 11-20 of 324 results. Next