cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 326 results. Next

A351455 a(n) = A064989(A001615(A003961(n))).

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 2, 4, 6, 1, 5, 4, 4, 2, 2, 8, 3, 6, 2, 2, 4, 5, 6, 8, 5, 4, 18, 4, 1, 2, 17, 16, 10, 3, 2, 12, 10, 2, 8, 4, 7, 4, 2, 10, 6, 6, 8, 16, 14, 5, 6, 8, 6, 18, 5, 8, 4, 1, 29, 4, 13, 17, 12, 32, 4, 10, 4, 6, 12, 2, 31, 24, 3, 10, 10, 4, 10, 8, 10, 8, 54, 7, 12, 8, 3, 2, 2, 20, 25, 6, 8
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Crossrefs

Coincides with A326042 on squarefree numbers (A005117, and apparently on no other numbers).
Cf. also A351441.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = { my(f = factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A351455(n) = A064989(A001615(A003961(n)));

Formula

Multiplicative with a(p^e) = A064989((q+1)*q^(e-1)), where q = nextPrime(p) = A151800(p).
a(n) = A003557(n) * A351450(n).

A253628 Psi(n) mod n, where Psi is the Dedekind psi function (A001615).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 4, 3, 8, 1, 0, 1, 10, 9, 8, 1, 0, 1, 16, 11, 14, 1, 0, 5, 16, 9, 20, 1, 12, 1, 16, 15, 20, 13, 0, 1, 22, 17, 32, 1, 12, 1, 28, 27, 26, 1, 0, 7, 40, 21, 32, 1, 0, 17, 40, 23, 32, 1, 24, 1, 34, 33, 32, 19, 12, 1, 40, 27, 4, 1, 0, 1, 40, 45
Offset: 1

Views

Author

Tom Edgar, Jan 06 2015

Keywords

Comments

a(n) = A054024(n) when n is squarefree.
Indices of 1 appear to be given by primes A000040 (see conjecture in A068494). The (weaker) statement that a(prime(i)) = 1 is a direct consequence of the multiplicity of A001615.
a(n) = 0 if n is a member of A187778.

Examples

			A001615(12) = 24 and 24 == 0 (mod 12) so a(12) = 0.
A001615(15) = 24 and 24 == 9 (mod 15) so a(15) = 9.
		

Crossrefs

Programs

  • Maple
    A253628 := proc(n)
        modp(A001615(n),n) ;
    end proc: # R. J. Mathar, Jan 09 2015
  • Mathematica
    a253628[n_] :=
    Mod[DirichletConvolve[j, MoebiusMu[j]^2, j, #], #] & /@ Range@n; a253628[75] (* Michael De Vlieger, Jan 07 2015, after Jan Mangaldan at A001615 *)
  • Sage
    [(n*mul(1+1/p for p in prime_divisors(n)))%n for n in [1..100]]

Formula

a(n) = A001615(n) mod n.

A291051 a(n) is the smallest number k such that psi(k) = n*phi(k) where psi(k) is Dedekind psi function (A001615) and phi(k) is Euler totient function (A000010), or 0 if no such k exists.

Original entry on oeis.org

1, 3, 2, 14, 190, 6, 78, 42, 30, 570, 16770, 210, 1102290, 2730, 67830, 43890, 133707210, 746130, 27606810, 16546530, 9699690, 417086670, 3828438543930, 8720021310, 705196562070
Offset: 1

Views

Author

Altug Alkan, Aug 17 2017

Keywords

Comments

Also a(n) is the smallest squarefree number k such that sigma(k) = n*phi(k), or 0 if no such k exists.
It is conjectured that A055234(n) > 0 for each n. Is a(n) > 0 for all values of n?
10^12 < a(26) <= 50353622409090. - Giovanni Resta, Aug 18 2017

Examples

			a(4) = 14 since psi(14) / phi(14) = 24 / 6 = 4 and 14 is the least number with this property.
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := n*Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]; f[n_] := Block[{k = 1}, While[ n*EulerPhi[k] != psi[k], k++]; k]; Array[f, 22] (* Robert G. Wilson v, Sep 15 2017 *)
  • PARI
    a001615(n) = n*sumdivmult(n, d, issquarefree(d)/d);
    a(n) = {my(k = 1); while (n*eulerphi(k) != a001615(k), k++); k; } \\ Altug Alkan, Aug 17 2017, after Charles R Greathouse IV at A001615

Extensions

a(23)-a(25) from Giovanni Resta, Aug 18 2017

A291138 a(n) is the smallest k such that psi(k) and phi(k) have same distinct prime factors when k is the product of n distinct primes (psi(k) = A001615(k) and phi(k) = A000010(k)), or 0 if no such k exists.

Original entry on oeis.org

3, 14, 42, 210, 3570, 43890, 746130, 14804790, 281291010, 8720021310, 278196808890, 8624101075590, 353588144099190, 25104758231042490, 2234323482562781610, 129325924468711040070, 9182140637278483844970, 725389110345000223752630, 51501592227099266198116170
Offset: 1

Views

Author

Altug Alkan, Aug 18 2017

Keywords

Examples

			a(5) = 3570 = 2*3*5*7*17 because psi(3570) = 3*4*6*8*18 = 2^7*3^4, and phi(3570) = 2*4*6*16 = 2^8*3^1 and 3570 is the least number with 5 distinct prime factors having this property.
		

Crossrefs

Cf. A000010 (phi), A005117 (squarefree), A001615 (psi), A007947 (radical).

Programs

  • Mathematica
    Rest@ Values[#][[All, 1]] &@ KeySort@ PositionIndex@ Table[If[SameQ @@ #, PrimeNu@ n, 0] &@ Map[FactorInteger[#][[All, 1]] &, {EulerPhi@ n, n Sum[MoebiusMu[d]^2/d, {d, Divisors@ n}]}], {n, 10^6}] (* Michael De Vlieger, Aug 26 2017, after Michael Somos at A001615 *)
  • PARI
    generate(A, B, n) = A=max(A, vecprod(primes(n))); (f(m, p, j, phi=1, psi=1) = my(list=List()); my(s=sqrtnint(B\m, j)); if(j==1, forprime(q=max(p, ceil(A/m)), s, if(factorback(factor((q-1)*phi)[, 1]) == factorback(factor((q+1)*psi)[, 1]), listput(list, m*q))), forprime(q=p, s, my(t=m*q); list=concat(list, f(t, q+1, j-1, phi*(q-1), psi*(q+1))))); list); vecsort(Vec(f(1, 2, n)));
    a(n) = my(x=vecprod(primes(n)), y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Jan 25 2023

Extensions

a(10) from Giovanni Resta, Aug 26 2017
a(11)-a(19) from Daniel Suteu, Jan 25 2023

A291205 Numbers n such that psi(n) = phi(m) has no solution for any m (psi(n) = A001615(n) and phi(m) = A000010(m)).

Original entry on oeis.org

2, 13, 37, 50, 58, 61, 67, 73, 74, 89, 97, 111, 113, 122, 151, 157, 169, 173, 181, 183, 193, 229, 233, 241, 250, 257, 259, 274, 277, 283, 298, 307, 313, 314, 317, 337, 349, 353, 373, 386, 389, 394, 397, 401, 409, 421, 427, 433, 449, 453, 457, 466, 481, 487, 507, 509, 514, 541, 543, 547, 554, 557, 562
Offset: 1

Views

Author

Altug Alkan, Aug 21 2017

Keywords

Comments

Numbers n such that psi(n) is not a totient number (A002202) where psi(n) = A001615(n).

Examples

			58 is a term because psi(58) = 90 is not a term of A002202.
		

Crossrefs

Programs

A291209 Numbers n such that psi(n) is the sum of proper divisors of n where psi(n) = A001615(n).

Original entry on oeis.org

9504, 16560, 41400, 5048568, 10889856, 11941344, 16255080, 131473152, 5517818880, 107561120688, 612014161920
Offset: 1

Views

Author

Altug Alkan, Aug 21 2017

Keywords

Comments

Or numbers n such that sigma(n) = psi(n) + n where psi(n) = A001615(n) and sigma(n) = A000203(n).
9504 = 2^5*3^3*11 is the smallest number with this property.

Examples

			16560 is a term because sigma(16560) = 58032 and psi(16560) = 41472; sigma(16560) - psi(16560) = 16560.
		

Crossrefs

Programs

Extensions

a(9)-a(11) from Giovanni Resta, Aug 21 2017

A291487 a(n) is the smallest k such that psi(k) = n!, or 0 if no such k exists (psi(k) = A001615(k)).

Original entry on oeis.org

1, 1, 0, 4, 12, 75, 300, 1950, 13650, 122850, 1160250, 13340250, 140390250, 1825073250, 25318743450, 370489869750, 5503458610650, 93558796381050, 1643961707838450, 30815473745606550, 596477734382780250, 12526032422038385250, 272871020017346000250, 6276033460398958005750
Offset: 0

Views

Author

Altug Alkan, Aug 24 2017

Keywords

Examples

			a(5) = 75 because psi(75) = 120 = 5! and 75 is the least number with this property.
a(7) = 1950 and 1950 has no prime factor 7, so a(8) = 7*1950 = 13650.
		

Crossrefs

Programs

  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))
    a(n) = my(N=n!); for(k=1, N, if(a001615(k)==N, return(k))); 0 \\ after Charles R Greathouse IV at A001615

Extensions

a(13)-a(14) from Giovanni Resta, Aug 25 2017
a(15)-a(23) from Daniel Suteu, Dec 29 2020

A291959 Numbers n such that the arithmetic, geometric and harmonic means of phi(n) and psi(n) are all integers, where phi(n) is the Euler totient function (A000010) and psi(n) is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 150, 300, 418, 450, 525, 600, 750, 836, 900, 1200, 1350, 1500, 1575, 1672, 1800, 2250, 2400, 2625, 2700, 3000, 3135, 3344, 3600, 3675, 3750, 4050, 4500, 4598, 4725, 4800, 5400, 6000, 6688, 6750, 7200, 7500, 7875, 7942, 8100, 9000, 9196, 9405, 9600, 10800
Offset: 1

Views

Author

Amiram Eldar, Sep 06 2017

Keywords

Comments

The number of terms below 10^3, 10^4, ... are 10, 44, 147, 397, ...

Examples

			phi(150)=40, psi(150)=360, their arithmetic mean = 200, geometric mean = 120, harmonic mean = 72 are all integers.
		

Crossrefs

Programs

  • Mathematica
    dedekindPsi[n_] := If[n < 1, 0, n Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]];
    aQ[n_] := Module[{s = dedekindPsi[n], p = EulerPhi[n]}, IntegerQ[(s + p)/2] && IntegerQ[Sqrt[s*p]] && IntegerQ[2 s*p/(s + p)]]; Select[Range[10^5], aQ]

A292063 Triangular numbers n such that psi(n) is also a triangular number, where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 780, 2775, 5050, 474825, 681528, 1727011, 5286126, 5911641, 6604795, 17325441, 21612025, 27799696, 45025305, 386767578, 1538599128, 2086160121, 3679490220, 5718242211, 7092226351, 8019794628, 16505718895, 36604197735, 55541611986, 56693041356, 89369984476
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2017

Keywords

Comments

The indices of these triangular numbers are 1, 39, 74, 100, 974, 1167, 1858, 3251, 3438, 3634, 5886, 6574, 7456, 9489, ...
The indices of the triangular psi values are 1, 63, 95, 135, 1280, 1664, 2015, 4607, 4095, 4095, 7424, 7424, 9152, 12543, ...

Examples

			780 is in the sequence since 780 = 39*40/2 is triangular and psi(780) = 2016 = 63*64/2 is also triangular.
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n<1, 0, n*Sum[MoebiusMu[d]^2/d, {d, Divisors @ n}]]; triQ[n_] := IntegerQ@ Sqrt[8n+1]; Select[Accumulate[Range[1000]], triQ[psi[#]]&]

Extensions

a(18)-a(26) from Giovanni Resta, Sep 11 2017

A292064 Triangular numbers k such that psi(k) is a square, where psi(k) is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 3, 66, 210, 276, 1128, 2346, 2556, 4278, 5778, 7140, 7750, 7875, 11781, 13041, 18336, 22578, 27966, 28920, 31878, 32131, 32640, 35511, 51681, 70125, 73536, 79800, 89676, 93096, 100128, 102378, 122760, 139128, 169653, 173755, 177906, 209628, 223446, 253116
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2017

Keywords

Comments

The indices of these triangular numbers are 1, 2, 11, 20, 23, 47, 68, 71, 92, 107, 119, 124, 125, 153, 161, 191, 212, 236, 240, ...
The indices of the square psi values are 1, 2, 12, 24, 24, 48, 72, 72, 96, 108, 144, 120, 120, 144, 144, 192, 216, 240, 264, ...
Intersection of A000217 and A291167. - Altug Alkan, Sep 08 2017

Examples

			66 is in the sequence since 66 = 11*12/2 is triangular, and psi(66) = 144 = 12^2 is square.
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n<1, 0, n*Sum[MoebiusMu[d]^2/d, {d, Divisors @ n}]];
    Select[Accumulate[Range[1000]], IntegerQ[Sqrt[psi[#]]]&]
Previous Showing 61-70 of 326 results. Next