cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A110112 Square array of numbers associated to the recurrences b(k) = b(k-1) + n*b(k-2); array T(n,k), read by descending antidiagonals, for n, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 15, 5, 1, 1, 60, 55, 7, 1, 1, 260, 385, 133, 9, 1, 1, 1092, 3311, 1330, 261, 11, 1, 1, 4641, 25585, 18430, 3393, 451, 13, 1, 1, 19635, 208335, 210490, 68237, 7216, 715, 15, 1, 1, 83215, 1652145, 2673223, 1037673, 197456, 13585, 1065, 17, 1, 1
Offset: 0

Views

Author

Paul Barry, Jul 12 2005

Keywords

Comments

Rows include A001655, (-1)^n*A015266(n+3), A110111.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  1,  1,   1,    1,      1,       1,        1,          1, ...
  1,  3,  15,   60,    260,    1092,     4641,      19635, ...
  1,  5,  55,  385,   3311,   25585,   208335,    1652145, ...
  1,  7, 133, 1330,  18430,  210490,  2673223,   31940881, ...
  1,  9, 261, 3393,  68237, 1037673, 18598293,  300963537, ...
  1, 11, 451, 7216, 197456, 3761296, 89565861, 1842200151, ...
  ...
		

Crossrefs

Cf. A083856.

Programs

  • Maple
    a := proc(n, k) local v; option remember; if k = 0 and 0 <= n then v := 0; end if; if k = 1 and 0 <= n then v := 1; end if; if 2 <= k and 0 <= n then v := a(n, k - 1) + n*a(n, k - 2); end if; v; end proc;
    T := proc(n, k) a(n, k + 1)*a(n, k + 2)*a(n, k + 3)/(n + 1); end proc;
    seq(seq(T(k,n-k), k=0..n), n=0..10); # Petros Hadjicostas, Dec 26 2019

Formula

T(n, k) = a(n, k+1) * a(n, k+2) * a(n, k+3)/(n+1), where a(n, k) is the solution to a(n, k) = a(n, k-1) + n*a(n, k-2) for k >= 2 with a(n, 0) = 0 and a(n, 1) = 1 for all n >= 0.
Row n has g.f. 1/((1 + n*x - n^3*x^2) * (1 - (3*n + 1)*x - n^3*x^2)).

A177727 a(0)=1; a(n) = a(n-1) * Fibonacci(3+n) * Fibonacci(1+n) / (Fibonacci(n))^2, n > 1.

Original entry on oeis.org

1, 3, 30, 180, 1300, 8736, 60333, 412335, 2829310, 19384200, 132882696, 910735488, 6242420665, 42785803515, 293259265950, 2010026277756, 13776931957468, 94428478367520, 647222466507045, 4436128656563175, 30405678471399166, 208403619747957648, 1428419662108160400
Offset: 0

Views

Author

Roger L. Bagula, May 12 2010

Keywords

Comments

Similar recurrences a(n) = a(n-1)*F(a0+n-1)*F(b0+n-1)/(F(n)*F(c0+n-1)) are:
{a0,b0,c0} = {3,2,1} in A066258.
{a0,b0,c0} = {3,1,1} in A001654.
{a0,b0,c0} = {4,1,1} in A001655 and next for 5,6 as well.

References

  • Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, p. 93.

Crossrefs

Programs

  • Magma
    I:=[1, 3, 30, 180, 1300]; [n le 5 select I[n] else 5*Self(n-1)+15*Self(n-2)-15*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011
  • Maple
    with (combinat):
    A177727 := proc(n)
       if n = 0 then
               1;
       else
               procname(n-1)*fibonacci(3+n)*fibonacci(1+n)/fibonacci(n)^2 ;
       end if;
    end proc:
    seq(A177727(n),n=0..10) ; # R. J. Mathar, Nov 17 2011
  • Mathematica
    a0 = 4; b0 = 2; c0 = 1;
    a[0] = 1;
    a[n_] := a[n] = (Fibonacci[(a0 + n - 1)]*Fibonacci[( b0 + n - 1)]/(Fibonacci[n]*Fibonacci[(c0 + n - 1)]))*a[n - 1];
    Table[a[n], {n, 0, 30}]
    LinearRecurrence[{5,15,-15,-5,1},{1,3,30,180,1300},30] (* Vincenzo Librandi, Nov 18 2011 *)

Formula

G.f.: ( -1+2*x ) / ( (x-1)*(x^2+3*x+1)*(x^2-7*x+1) ). - R. J. Mathar, Nov 17 2011
a(n) = A001656(n) - 2*A001656(n-1). - R. J. Mathar, Nov 17 2011

A215038 Partial sums of A066259: a(n) = Sum_{k=0..n} F(k+1)^2*F(k), n>=0, with the Fibonacci numbers F=A000045.

Original entry on oeis.org

0, 1, 5, 23, 98, 418, 1770, 7503, 31779, 134629, 570284, 2415788, 10233404, 43349461, 183631161, 777874251, 3295127934, 13958386366, 59128672790, 250473078515, 1061020985255, 4494557022121, 19039249069560, 80651553307128
Offset: 0

Views

Author

Wolfdieter Lang, Aug 09 2012

Keywords

Comments

For a derivation of the explicit form of this sum see the link under A215308 on the partial summation formula, eq. (7).

Examples

			a(2) = 0 + 1^2*1 + 2^2*1 = 1 + 4 = 5.
		

Crossrefs

Formula

a(n) = Sum_{k=0..n} A066259(k) = Sum_{k=0..n} F(k+1)^2*F(k), n >= 0, with A066259(0)=0.
a(n) = (F(n+2)*F(n+1)^2 - (-1)^n*F(n) - 1)/2 = (A066258(n+1) - (-1)^n*A008346(n))/2, n >= 0.
O.g.f.: x*(1+x)/((1+x-x^2)*(1-4*x-x^2)*(1-x)) (from A066259).
E.g.f.: (2*exp(-x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2)) + exp(2*x)*(15*cosh(sqrt(15)*x) + 7*sqrt(5)*sinh(sqrt(5)*x)) - 25*exp(x))/50. - Stefano Spezia, Oct 28 2024
Previous Showing 11-13 of 13 results.