cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A331489 Matula-Goebel numbers of topologically series-reduced rooted trees.

Original entry on oeis.org

1, 2, 7, 8, 16, 19, 28, 32, 43, 53, 56, 64, 76, 98, 107, 112, 128, 131, 152, 163, 172, 196, 212, 224, 227, 256, 263, 266, 304, 311, 343, 344, 383, 392, 424, 428, 443, 448, 512, 521, 524, 532, 577, 602, 608, 613, 652, 686, 688, 719, 722, 742, 751, 784, 848, 856
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2020

Keywords

Comments

We say that a rooted tree is topologically series-reduced if no vertex (including the root) has degree 2.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of its branches. This gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of all topologically series-reduced rooted trees together with their Matula-Goebel numbers begins:
    1: o
    2: (o)
    7: ((oo))
    8: (ooo)
   16: (oooo)
   19: ((ooo))
   28: (oo(oo))
   32: (ooooo)
   43: ((o(oo)))
   53: ((oooo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   98: (o(oo)(oo))
  107: ((oo(oo)))
  112: (oooo(oo))
  128: (ooooooo)
  131: ((ooooo))
  152: (ooo(ooo))
  163: ((o(ooo)))
		

Crossrefs

Unlabeled rooted trees are counted by A000081.
Topologically series-reduced trees are counted by A000014.
Topologically series-reduced rooted trees are counted by A001679.
Labeled topologically series-reduced trees are counted by A005512.
Labeled topologically series-reduced rooted trees are counted by A060313.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    nn=1000;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    srQ[n_]:=Or[n==1,With[{m=primeMS[n]},And[Length[m]>1,And@@srQ/@m]]];
    Select[Range[nn],PrimeOmega[#]!=2&&And@@srQ/@primeMS[#]&]

A331578 Number of labeled series-reduced rooted trees with n vertices and more than two branches of the root.

Original entry on oeis.org

0, 0, 0, 4, 5, 186, 847, 17928, 166833, 3196630, 45667391, 925287276, 17407857337, 393376875906, 8989368580935, 229332484742416, 6094576250570849, 174924522900914094, 5271210321949744111, 168792243040279327860, 5674164658298121248361, 200870558472768096534490
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2020

Keywords

Comments

A rooted tree is series-reduced if no vertex (including the root) has degree 2.
Also labeled lone-child-avoiding rooted trees with n vertices and more than two branches, where a rooted tree is lone-child-avoiding if no vertex has exactly one child.

Examples

			Non-isomorphic representatives of the a(7) = 847 trees (in the format root[branches]) are:
  1[2,3,4[5,6,7]]
  1[2,3,4,5[6,7]]
  1[2,3,4,5,6,7]
		

Crossrefs

The non-series-reduced version is A331577.
The unlabeled version is A331488.
Lone-child-avoiding rooted trees are counted by A001678.
Topologically series-reduced rooted trees are counted by A001679.
Labeled topologically series-reduced rooted trees are counted by A060313.
Labeled lone-child-avoiding rooted trees are counted by A060356.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Matula-Goebel numbers of series-reduced rooted trees are A331489.

Programs

  • Mathematica
    lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
    Table[Length[Select[lrt[Range[n]],Length[#]>2&&FreeQ[#,[]]&]],{n,6}]
  • PARI
    a(n) = {if(n<=1, 0, sum(k=1, n, (-1)^(n-k)*k^(k-2)*n*(n-2)!*binomial(n-1,k-1)*(2*k*n - n - k^2)/k!))} \\ Andrew Howroyd, Dec 09 2020
    
  • PARI
    seq(n)={my(w=lambertw(-x/(1+x) + O(x*x^n))); Vec(serlaplace(-x - w - (x/2)*w^2), -n)} \\ Andrew Howroyd, Dec 09 2020

Formula

From Andrew Howroyd, Dec 09 2020: (Start)
a(n) = A060313(n) - n*A060356(n-1) for n > 1.
a(n) = Sum_{k=1..n} (-1)^(n-k)*k^(k-2)*n*(n-2)!*binomial(n-1,k-1)*(2*k*n - n - k^2)/k! for n > 1.
E.g.f.: -x - LambertW(-x/(1+x)) - (x/2)*LambertW(-x/(1+x))^2.
(End)

Extensions

Terms a(9) and beyond from Andrew Howroyd, Dec 09 2020

A246403 Decimal expansion of a constant related to series-reduced trees.

Original entry on oeis.org

2, 1, 8, 9, 4, 6, 1, 9, 8, 5, 6, 6, 0, 8, 5, 0, 5, 6, 3, 8, 8, 7, 0, 2, 7, 5, 7, 7, 1, 1, 4, 5, 4, 4, 9, 6, 7, 3, 3, 1, 7, 0, 8, 7, 4, 4, 2, 3, 8, 4, 9, 0, 3, 0, 1, 0, 5, 0, 2, 7, 3, 4, 2, 5, 3, 5, 7, 1, 5, 6, 2, 5, 7, 0, 4, 2, 2, 1, 2, 2, 6, 3, 0, 0, 8, 5, 8, 6, 0, 7, 8, 4, 8, 1, 9, 3, 3, 3, 0, 8, 3, 2, 0, 3, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 25 2014

Keywords

Examples

			2.189461985660850563887027577114544967331...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 302 and 561.

Crossrefs

Formula

Equals lim n -> infinity A000014(n)^(1/n).
Equals lim n -> infinity A001678(n)^(1/n).
Equals lim n -> infinity A001679(n)^(1/n).
Equals lim n -> infinity A059123(n)^(1/n).
Equals lim n -> infinity A244456(n)^(1/n).
Equals lim n -> infinity A198518(n)^(1/n).

Extensions

More terms from Vaclav Kotesovec, Sep 03 2014 and Dec 26 2020

A244456 Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 2.

Original entry on oeis.org

1, 0, 1, 2, 4, 7, 15, 28, 56, 110, 220, 436, 878, 1762, 3560, 7205, 14650, 29838, 60991, 124938, 256628, 528238, 1089834, 2252860, 4666304, 9682422, 20125777, 41900433, 87369029, 182441944, 381499040, 798782945, 1674575394, 3514733683, 7385298837, 15534856067
Offset: 3

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 29 2014

Keywords

Examples

			a(5) = 1:
      o
     / \
    o   o
   / \
  o   o
		

Crossrefs

Column k=2 of A244454.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
          1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
          b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
        end:
    a:= n-> b(n-1$2, 2$2) -b(n-1$2, 3$2):
    seq(a(n), n=3..40);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]]]; a[n_] := b[n - 1, n - 1, 2, 2] - b[n - 1, n - 1, 3, 3] // FullSimplify; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711..., c = 0.4213018528699249210965028... (constants are same as for A001679). - Vaclav Kotesovec, Jul 02 2014

A331233 Number of unlabeled rooted trees with n vertices and more than two branches of the root.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 12, 30, 75, 194, 501, 1317, 3485, 9302, 24976, 67500, 183290, 500094, 1369939, 3766831, 10391722, 28756022, 79794407, 221987348, 619019808, 1729924110, 4844242273, 13590663071, 38195831829, 107523305566, 303148601795, 855922155734, 2419923253795
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2020

Keywords

Examples

			The a(4) = 1 through a(7) = 12 rooted trees:
  (ooo)  (oooo)   (ooooo)    (oooooo)
         (oo(o))  (oo(oo))   (oo(ooo))
                  (ooo(o))   (ooo(oo))
                  (o(o)(o))  (oooo(o))
                  (oo((o)))  (o(o)(oo))
                             (oo((oo)))
                             (oo(o)(o))
                             (oo(o(o)))
                             (ooo((o)))
                             ((o)(o)(o))
                             (o(o)((o)))
                             (oo(((o))))
		

Crossrefs

The Matula-Goebel numbers of these trees are given by A033942.
The series-reduced case is A331488.
The lone-child-avoiding case is (also) A331488.
The labeled version is A331577.
Unlabeled rooted trees are counted by A000081.

Programs

  • Maple
    g:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i<1, 0, add(binomial(g(i-1$2, 0)+j-1, j)*
             g(n-i*j, i-1, max(0, t-j)), j=0..n/i)))
        end:
    a:= n-> g(n-1$2, 3):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jan 22 2020
  • Mathematica
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],Length[#]>2&]],{n,10}]
    (* Second program: *)
    g[n_, i_, t_] := g[n, i, t] = If[n == 0, If[t == 0, 1, 0],
         If[i < 1, 0, Sum[Binomial[g[i - 1, i - 1, 0] + j - 1, j]*
         g[n - i*j, i - 1, Max[0, t - j]], {j, 0, n/i}]]];
    a[n_] := g[n-1, n-1, 3];
    Array[a, 40] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
  • PARI
    \\ TreeGf gives gf of A000081.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(g=TreeGf(n)); Vec(g - x*(1 + g + (g^2 + subst(g, x, x^2))/2), -n)} \\ Andrew Howroyd, Jan 22 2020

Formula

For n > 1, a(n) = Sum_{k > 2} A033185(n - 1, k).
G.f.: f(x) - x*(1 + f(x) + (f(x)^2 + f(x^2))/2) where f(x) is the g.f. of A000081. - Andrew Howroyd, Jan 22 2020
Previous Showing 11-15 of 15 results.