cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A383961 Square array read by upward antidiagonals: T(n,k) is the n-th number whose largest odd divisor is its k-th divisor, n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 15, 16, 11, 10, 20, 18, 32, 13, 12, 21, 50, 36, 64, 17, 14, 27, 81, 45, 30, 128, 19, 22, 28, 88, 63, 42, 105, 256, 23, 24, 33, 98, 75, 54, 135, 60, 512, 29, 25, 35, 104, 99, 66, 165, 84, 120, 1024, 31, 26, 39, 136, 117, 70, 189, 108, 140, 90
Offset: 1

Views

Author

Omar E. Pol, May 16 2025

Keywords

Comments

This is a permutation of the positive integers.
From Peter Munn, May 18 2025: (Start)
Numbers with the same factorization pattern of their sequence of divisors (see A290110) and the same parity appear here in the same column.
For example, each column k > 2 includes the subsequence 2^(k-2) * p for all prime p > 2^(k-2).
(End)

Examples

			The corner 15 X 15 of the square array is as follows:
      1,  3,  6,  15,  18,  36,  30, 105,  60, 120,  90, 315,  816, 1360, 180, ...
      2,  5,  9,  20,  50,  45,  42, 135,  84, 140, 126, 324,  880, 1520, 210, ...
      4,  7, 10,  21,  81,  63,  54, 165, 108, 168, 150, 432,  912, 1632, 252, ...
      8, 11, 12,  27,  88,  75,  66, 189, 132, 220, 198, 440, 1040, 1760, 270, ...
     16, 13, 14,  28,  98,  99,  70, 195, 156, 240, 216, 495, 1056, 1824, 300, ...
     32, 17, 22,  33, 104, 117,  72, 200, 162, 260, 234, 520, 1104, 1840, 330, ...
     64, 19, 24,  35, 136, 147,  78, 231, 204, 308, 264, 525, 1120, 1904, 378, ...
    128, 23, 25,  39, 152, 153, 100, 255, 225, 340, 280, 528, 1144, 2000, 390, ...
    256, 29, 26,  40, 176, 171, 102, 273, 228, 364, 294, 560, 1232, 2080, 396, ...
    512, 31, 34,  44, 184, 175, 110, 285, 276, 380, 306, 585, 1248, 2128, 462, ...
   1024, 37, 38,  51, 208, 207, 114, 297, 348, 405, 312, 616, 1392, 2208, 468, ...
   2048, 41, 46,  52, 232, 243, 130, 345, 372, 460, 336, 624, 1456, 2288, 510, ...
   4096, 43, 48,  55, 242, 245, 138, 351, 400, 476, 342, 675, 1458, 2320, 546, ...
   8192, 47, 49,  56, 248, 261, 144, 357, 441, 480, 350, 680, 1488, 2464, 570, ...
  16384, 53, 58,  57, 296, 272, 154, 375, 444, 500, 408, 693, 1496, 2480, 588, ...
  ...
		

Crossrefs

Column 1 gives A000079.
Column 2 gives A065091.
Column 3 consists of (A001248 U A091629 U A100484)\{4}.
Column 4 consists of numbers >= 15 in (A001749 U A030078 U A046388 U A070875).
Row 1 gives A383402.

Programs

  • Mathematica
    f[n_] := If[OddQ[n], DivisorSigma[0, n], FirstPosition[Divisors[n], n/2^IntegerExponent[n, 2]][[1]]]; seq[m_] := Module[{t = Table[0, {m}, {m}], v = Table[0, {m}], c = 0, k = 1, i, j}, While[c < m*(m + 1)/2, i = f[k]; If[i <= m, j = v[[i]] + 1; If[j <= m - i + 1, t[[i]][[j]] = k; v[[i]]++; c++]]; k++]; Table[t[[j]][[i - j + 1]], {i, 1, m}, {j, 1, i}] // Flatten]; seq[11] (* Amiram Eldar, May 16 2025 *)

A175880 a(1)=1, a(2)=2. If n >= 3: if n/2 is in the sequence, a(n)=0, otherwise a(n)=n.

Original entry on oeis.org

1, 2, 3, 0, 5, 0, 7, 8, 9, 0, 11, 12, 13, 0, 15, 0, 17, 0, 19, 20, 21, 0, 23, 0, 25, 0, 27, 28, 29, 0, 31, 32, 33, 0, 35, 36, 37, 0, 39, 0, 41, 0, 43, 44, 45, 0, 47, 48, 49, 0, 51, 52, 53, 0, 55, 0, 57, 0, 59, 60, 61, 0, 63, 0, 65, 0, 67, 68, 69, 0, 71, 0, 73, 0, 75, 76, 77, 0, 79, 80
Offset: 1

Views

Author

Adriano Caroli, Dec 05 2010

Keywords

Comments

If n > 0 and n is in the sequence, then a(2*n) = 0. Example: 5 is in the sequence, so a(2*5) = a(10) = 0.
Is this a(n) = n*A039982(n-1), n > 1? [R. J. Mathar, Dec 07 2010]

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a175880 n = a175880_list !! (n-1)
    a175880_list = 1 : f [2..] [2..] where
       f (x:xs) (y:ys) | x == y    = x : (f xs $ delete (2*x) ys)
                       | otherwise = 0 : (f xs (y:ys))
    for_bFile = take 10000 a175880_list
    -- Reinhard Zumkeller, Feb 09 2011
  • Maple
    A110654 := proc(n) 2*n+1-(-1)^n ; %/4 ;end proc:
    A175880 := proc(n) if n <=2 then n; else if type(n,'even') then n-2*procname(A110654(n)) ; else n; end if; end if; end proc:
    seq(A175880(n),n=1..40) ; # R. J. Mathar, Dec 07 2010

Formula

a(n) = n - (1 + (-1)^n) * a((2*n + 1 - (-1)^n)/4), n >= 3.
a(n) = n - A010673(n+1)*a(A110654(n)).

A370010 a(n) is the greatest prime less than 4*prime(n).

Original entry on oeis.org

7, 11, 19, 23, 43, 47, 67, 73, 89, 113, 113, 139, 163, 167, 181, 211, 233, 241, 263, 283, 283, 313, 331, 353, 383, 401, 409, 421, 433, 449, 503, 523, 547, 547, 593, 601, 619, 647, 661, 691, 709, 719, 761, 769, 787, 787, 839, 887, 907, 911, 929, 953, 953, 997
Offset: 1

Views

Author

Clark Kimberling, Feb 09 2024

Keywords

Examples

			7 < 4*2 < 11 < 4*3 < 13 < 17 < 19  < 5*3 < 23, so (a(1), a(2), a(3)) = (7,11,19).
		

Crossrefs

Programs

  • Mathematica
    Table[Prime[PrimePi[4*Prime[n]]], {n,1,200}]
  • PARI
    a(n) = precprime(4*prime(n)); \\ Michel Marcus, Feb 10 2024

A370011 a(n) is the least prime greater than 4*prime(n).

Original entry on oeis.org

11, 13, 23, 29, 47, 53, 71, 79, 97, 127, 127, 149, 167, 173, 191, 223, 239, 251, 269, 293, 293, 317, 337, 359, 389, 409, 419, 431, 439, 457, 509, 541, 557, 557, 599, 607, 631, 653, 673, 701, 719, 727, 769, 773, 797, 797, 853, 907, 911, 919, 937, 967, 967
Offset: 1

Views

Author

Clark Kimberling, Feb 09 2024

Keywords

Examples

			7 < 4*2 < 11 < 4*3 < 13 < 17 < 19 < 4*5 < 23, so (a(1), a(2), a(3)) = (11,13,23).
		

Crossrefs

Programs

  • Mathematica
    Table[NextPrime[Prime[PrimePi[4*Prime[n]]]], {n, 1, 200}]
  • PARI
    a(n) = nextprime(4*prime(n)); \\ Michel Marcus, Feb 10 2024

A363473 Triangle read by rows: T(n, k) = k * prime(n - k + A061395(k)) for 1 < k <= n, and T(n, 1) = A008578(n).

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 5, 10, 15, 8, 7, 14, 21, 12, 25, 11, 22, 33, 20, 35, 18, 13, 26, 39, 28, 55, 30, 49, 17, 34, 51, 44, 65, 42, 77, 16, 19, 38, 57, 52, 85, 66, 91, 24, 27, 23, 46, 69, 68, 95, 78, 119, 40, 45, 50, 29, 58, 87, 76, 115, 102, 133, 56, 63, 70, 121, 31, 62, 93, 92, 145, 114, 161, 88, 99, 110, 143, 36
Offset: 1

Views

Author

Werner Schulte, Jan 05 2024

Keywords

Comments

Conjecture: this is a permutation of the natural numbers.
Generalized conjecture: Let T(n, k) = b(k) * prime(n - k + A061395(b(k))) for 1 < k <= n, and T(n, 1) = A008578(n), where b(n), n > 0, is a permutation of the natural numbers with b(1) = 1, then T(n, k), read by rows, is a permutation of the natural numbers.

Examples

			Triangle begins:
n\k :   1    2    3    4    5    6    7    8    9   10   11   12   13
=====================================================================
 1  :   1
 2  :   2    4
 3  :   3    6    9
 4  :   5   10   15    8
 5  :   7   14   21   12   25
 6  :  11   22   33   20   35   18
 7  :  13   26   39   28   55   30   49
 8  :  17   34   51   44   65   42   77   16
 9  :  19   38   57   52   85   66   91   24   27
10  :  23   46   69   68   95   78  119   40   45   50
11  :  29   58   87   76  115  102  133   56   63   70  121
12  :  31   62   93   92  145  114  161   88   99  110  143   36
13  :  37   74  111  116  155  138  203  104  117  130  187   60  169
etc.
		

Crossrefs

Programs

  • PARI
    T(n, k) = { if(k==1, if(n==1, 1, prime(n-1)), i=floor((k+1)/2);
                while(k % prime(i) != 0, i=i-1); k*prime(n-k+i)) }
    
  • SageMath
    def prime(n): return sloane.A000040(n)
    def A061395(n): return prime_pi(factor(n)[-1][0]) if n > 1 else 0
    def T(n, k):
         if k == 1: return prime(n - 1) if n > 1 else 1
         return k * prime(n - k + A061395(k))
    for n in range(1, 11): print([T(n,k) for k in range(1, n+1)])
    # Peter Luschny, Jan 07 2024

Formula

T(n, n) = A253560(n) for n > 0.
T(n, 1) = A008578(n) for n > 0.
T(n, 2) = A001747(n) for n > 1.
T(n, 3) = A112773(n) for n > 2.
T(n, 4) = A001749(n-3) for n > 3.
T(n, 5) = A001750(n-2) for n > 4.
T(n, 6) = A138636(n-4) for n > 5.
T(n, 7) = A272470(n-3) for n > 6.
Previous Showing 21-25 of 25 results.