cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A084284 Number of connected labeled 4-colorable (i.e., chromatic number <= 4) graphs on n nodes.

Original entry on oeis.org

1, 1, 4, 38, 727, 26538, 1832900, 241187797, 60807843592, 29307734588670, 26725594885115575
Offset: 1

Views

Author

Eric W. Weisstein, May 25 2003

Keywords

Crossrefs

Formula

Logarithmic transform of A084280. - Andrew Howroyd, Dec 02 2018

Extensions

a(7)-a(11) from Andrew Howroyd, Dec 02 2018

A084285 Number of connected labeled 5-colorable (i.e., chromatic number <= 5) graphs on n nodes.

Original entry on oeis.org

1, 1, 4, 38, 728, 26703, 1865842, 251349147, 66151135747, 34319358639795, 35257449916868364
Offset: 1

Views

Author

Eric W. Weisstein, May 25 2003

Keywords

Crossrefs

Formula

Logarithmic transform of A084281. - Andrew Howroyd, Dec 02 2018

Extensions

a(7)-a(11) from Andrew Howroyd, Dec 02 2018

A084286 Number of connected labeled 6-colorable (i.e., chromatic number <= 6) graphs on n nodes.

Original entry on oeis.org

1, 1, 4, 38, 728, 26704, 1866255, 251547611, 66295198837, 34494681184926, 35636712584655663
Offset: 1

Views

Author

Eric W. Weisstein, May 25 2003

Keywords

Crossrefs

Formula

Logarithmic transform of A084282. - Andrew Howroyd, Dec 02 2018

Extensions

a(7)-a(11) from Andrew Howroyd, Dec 02 2018

A322330 Number of 3-colored connected graphs on n labeled nodes up to permutation of the colors.

Original entry on oeis.org

4, 84, 2470, 108390, 7192444, 726782784, 112795368970, 27132558531330, 10196751602156944, 6022337098348167564, 5612248139616665602510, 8274349264629020203315230, 19333678744046195877906230404, 71675537050405087142116150917624, 421915518251999125756688245906168690
Offset: 3

Views

Author

Andrew Howroyd, Dec 03 2018

Keywords

Comments

Equivalently, the number of ways to choose a stable partition of a simple connected graph on n labeled nodes with 3 parts. See A322064 for the definition of stable partition.

Crossrefs

Column k=3 of A322278.
Cf. A058873 (not necessarily connected), A322064.

Programs

  • PARI
    \\ See A322278 for M.
    { my(N=20); M(N,3)[3..N, 3]~ }

A322331 Number of 4-colored connected graphs on n labeled nodes up to permutation of the colors.

Original entry on oeis.org

38, 3140, 307390, 42747460, 9030799218, 3012940879620, 1628920258500230, 1451200592494754420, 2152262350514389189978, 5344908165470797467243700, 22297912999366719508496874990, 156537595118740106754291705258180, 1850935702258755131781978373277937218
Offset: 4

Views

Author

Andrew Howroyd, Dec 03 2018

Keywords

Comments

Equivalently, the number of ways to choose a stable partition of a simple connected graph on n labeled nodes with 4 parts. See A322064 for the definition of stable partition.

Crossrefs

Column k=4 of A322278.
Cf. A058873 (not necessarily connected), A322064.

Programs

  • PARI
    \\ See A322278 for M.
    { my(N=20); M(N,4)[4..N, 4]~ }

A084273 Number of labeled connected 3-chromatic (i.e., chromatic number = 3) graphs on n nodes.

Original entry on oeis.org

0, 0, 1, 18, 472, 18855
Offset: 1

Views

Author

Eric W. Weisstein, May 24 2003

Keywords

Crossrefs

A084274 Number of labeled connected 4-chromatic (i.e., chromatic number = 4) graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 1, 60, 4652
Offset: 1

Views

Author

Eric W. Weisstein, May 24 2003

Keywords

Crossrefs

A228859 Triangular array read by rows. T(n,k) is the number of labeled bipartite graphs on n nodes having exactly k connected components; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 19, 15, 6, 1, 195, 125, 45, 10, 1, 3031, 1545, 480, 105, 15, 1, 67263, 27307, 7035, 1400, 210, 21, 1, 2086099, 668367, 140098, 24045, 3430, 378, 28, 1, 89224635, 22427001, 3746925, 536214, 68355, 7434, 630, 36, 1
Offset: 1

Views

Author

Geoffrey Critzer, Sep 05 2013

Keywords

Comments

The Bell transform of A001832(n+1) (without column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016

Examples

			1,
1, 1,
3, 3, 1,
19, 15, 6, 1,
195, 125, 45, 10, 1,
3031, 1545, 480, 105, 15, 1,
		

Crossrefs

Row sums are A047864.
Column 1 is A001832.
Cf. A047863.

Programs

  • Mathematica
    nn=9;f[x_]:=Sum[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Drop[Range[0,nn]!CoefficientList[Series[Exp[y Log[f[x]]/2],{x,0,nn}],{x,y}],1]]//Grid
  • Sage
    # uses[bell_matrix from A264428, A001832]
    # Adds 1,0,0,0,... as column 0 to the triangle.
    bell_matrix(lambda n: A001832(n+1), 8) # Peter Luschny, Jan 21 2016

Formula

E.g.f.: sqrt(A(x)^y) where A(x) is the e.g.f. for A047863.
Sum_{k=1..n} T(n,k)*2^k = A047863(n).

A228861 Irregular triangular array read by rows. T(n,k) is the number of connected labeled bipartite graphs on n nodes with exactly k edges; n >= 1, 0 <= k <= A002620(n+1).

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 0, 0, 0, 16, 3, 0, 0, 0, 0, 125, 60, 10, 0, 0, 0, 0, 0, 1296, 1140, 480, 105, 10, 0, 0, 0, 0, 0, 0, 16807, 23100, 16800, 7770, 2331, 420, 35, 0, 0, 0, 0, 0, 0, 0, 262144, 513240, 555520, 412440, 222936, 88648, 25480, 5040, 616, 35
Offset: 1

Views

Author

Geoffrey Critzer, Sep 05 2013

Keywords

Examples

			Irregular Triangle begins:
  1;
  0, 1;
  0, 0, 3;
  0, 0, 0, 16,   3;
  0, 0, 0,  0, 125,   60,   10;
  0, 0, 0,  0,   0, 1296, 1140, 480, 105, 10;
  ...
		

Crossrefs

Row sums are A001832.

Programs

  • Mathematica
    nn=8;f[x_,y_]:=Sum[Sum[Binomial[n,k](1+y)^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Table[PadLeft[a=Map[Select[#,#>0&]&,Drop[Range[0,nn]!CoefficientList[Series[Log[f[x,y]]/2,{x,0,nn}],{x,y}],1]][[n]],Length[a]+n-1],{n,1,nn}]//Grid

Formula

E.g.f.: log(A(x,y))/2 where A(x,y) is the e.g.f. for A228890.
Previous Showing 11-19 of 19 results.