cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A359287 Number of divisors of 5*n-1 of form 5*k+2.

Original entry on oeis.org

1, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 2, 0, 2, 2, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 2, 0, 2, 2, 4, 0, 2, 0, 2, 1, 4, 0, 2, 0, 2, 0, 4, 2, 2, 0, 2, 0, 2, 0, 4, 0, 4, 0, 4, 0, 2, 2, 2, 0, 2, 0, 2, 0, 4, 0, 4, 0
Offset: 1

Views

Author

Seiichi Manyama, Dec 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-1, 1 &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, d%5==2);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(5*k-3))))

Formula

a(n) = A001877(5*n-1).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(5*k-3)).

A363926 Expansion of Sum_{k>0} x^(2*k) / (1 - x^(5*k))^2.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 4, 0, 3, 0, 1, 4, 1, 0, 1, 2, 6, 0, 4, 0, 1, 6, 3, 0, 1, 0, 8, 0, 5, 2, 4, 8, 1, 0, 1, 0, 12, 0, 6, 0, 1, 10, 4, 2, 1, 4, 12, 0, 7, 0, 3, 12, 1, 0, 4, 0, 14, 2, 8, 0, 6, 14, 5, 0, 3, 0, 19, 0, 9, 0, 1, 18, 1, 0, 1, 6, 18, 0, 15, 4, 1, 18, 6, 0, 1, 2, 20, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 3 &, Mod[#, 5] == 2 &] / 5; Array[a, 100] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%5==2)*(d+3))/5;

Formula

a(n) = (1/5) * Sum_{d|n, d==2 mod 5} (d+3) = (3 * A001877(n) + A284280(n))/5.
G.f.: Sum_{k>0} k * x^(5*k-3) / (1 - x^(5*k-3)).

A364598 a(n) is the least number with exactly n divisors of the form 5*k+2.

Original entry on oeis.org

1, 2, 12, 42, 84, 252, 462, 672, 924, 2016, 2772, 4032, 5544, 9072, 7392, 17136, 14784, 26208, 22176, 34272, 33264, 52416, 44352, 119952, 66528, 117936, 99792, 183456, 125664, 222768, 188496, 235872, 199584, 487872, 288288, 616896, 399168, 1206576, 376992, 1097712, 432432
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2023

Keywords

Crossrefs

Programs

  • PARI
    list(nmax) = {my(v = vector(nmax+1), c = 0, k = 1, i); while(c < nmax+1, i = sumdiv(k, d, d % 5 == 2) + 1; if(i <= nmax+1 && v[i] == 0, c++; v[i] = k); k++); v;} \\ Amiram Eldar, Jan 28 2025

A364044 Expansion of Sum_{k>0} x^(2*k) / (1 + x^(5*k)).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, -1, 1, 0, 1, 0, 2, 0, 0, 0, 1, -1, 1, 0, 1, -1, 2, 0, 2, 0, 1, -1, 0, 0, 1, 0, 2, 0, 0, -1, 2, -1, 1, 0, 1, 0, 1, 0, 2, 0, 1, -1, 2, -1, 1, -1, 2, 0, 0, 0, 0, -1, 1, 0, 2, 0, 2, -1, 2, 0, 2, -1, 0, 0, 0, 0, 3, 0, 0, 0, 1, -2, 1, 0, 1, -1, 2, 0, 2, -1, 1, -1, 2, 0, 1, -1, 2, 0, 0, 0, 3, -1, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^# &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%5==2)*(-1)^d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(5*k-3) / (1 - x^(5*k-3)).
a(n) = Sum_{d|n, d==2 (mod 5)} (-1)^d.

A364389 Number of divisors of n of the form 5*k+2 that are at most sqrt(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Count[Divisors[n], _?(# <= Sqrt[n] && MemberQ[{2}, Mod[#, 5]] &)], {n, 100}]
    nmax = 100; CoefficientList[Series[Sum[x^(5 k + 2)^2/(1 - x^(5 k + 2)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=0} x^(5*k+2)^2 / (1 - x^(5*k+2)).

A373335 Expansion of Sum_{k>=1} x^k / (1 + x^k + x^(2*k) + x^(3*k) + x^(4*k)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 2, 0, 1, -1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, -1, 1, 1, 2, 0, 2, -1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 2, 0, -1, 1, -1, 2, 0, 1, -1, 1, 1, 0, 2, 1, 1, 1, 0, 1, -1, 0, 1, 0, 0, 1, 1, 1, 0, 2, -1, 1, 1, 0, -1, 2, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 01 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=110, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1-x^(5*k))))
    
  • PARI
    a(n) = sumdiv(n, d, (d%5==1)-(d%5==2));

Formula

G.f.: Sum_{k>=1} x^k * (1 - x^k) / (1 - x^(5*k)).
a(n) = A001876(n) - A001877(n).
Previous Showing 11-16 of 16 results.