cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 259 results. Next

A214742 Least m>0 such that L(n)-m divides U(n)+m, where L = A000201 and U = A001950 (lower and upper Wythoff sequences).

Original entry on oeis.org

1, 3, 2, 1, 1, 10, 4, 13, 2, 2, 9, 10, 20, 3, 3, 26, 10, 29, 4, 4, 12, 36, 13, 5, 20, 42, 43, 35, 6, 49, 49, 52, 7, 7, 20, 28, 21, 8, 8, 65, 23, 68, 9, 9, 72, 75, 75, 10, 10, 39, 29, 84, 11, 11, 31, 91, 32, 12, 95, 97, 98, 48, 13, 50, 104, 107, 14, 14, 39, 91, 40, 15
Offset: 2

Views

Author

Clark Kimberling, Jul 28 2012

Keywords

Examples

			Write x#y if x|y is false; then 11#21, 10#22, 9#23, 8|24, so a(8) = 4.
		

Crossrefs

Cf. A214741.

Programs

  • Mathematica
    r=GoldenRatio;
    Table[m = 1; While[! Divisible[Floor[n*r^2]+m, Floor[n*r] - m], m++]; m, {n, 2, 100}]

Extensions

Typo in name corrected by Clark Kimberling, Jul 22 2015

A260317 Numbers not of the form v(m) + v(n), where v = A001950 (upper Wythoff numbers) and 1 <= m <= n - 1, for n >= 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 16, 19, 21, 24, 26, 29, 32, 34, 37, 40, 42, 45, 50, 53, 55, 58, 63, 66, 68, 71, 76, 79, 84, 87, 89, 92, 97, 100, 105, 108, 110, 113, 118, 121, 126, 131, 134, 139, 142, 144, 147, 152, 155, 160, 165, 168, 173, 176, 178, 181
Offset: 1

Views

Author

Clark Kimberling, Jul 22 2015

Keywords

Comments

It appears that the difference sequence consists entirely of Fibonacci numbers (A000045); see A260311.
In fact, the difference sequence consists only of the numbers 1,2,3,5. Proved with the Walnut theorem-prover. - Jeffrey Shallit, Oct 12 2022

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; z = 1060;
    u[n_] := u[n] = Floor[n*r]; v[n_] := v[n] = Floor[n*r^2];
    s[m_, n_] := v[m] + v[n];
    t = Table[s[m, n], {n, 2, z}, {m, 1, n - 1}]; (* A259601 *)
    w = Flatten[Table[Count[Flatten[t], n], {n, 1, z}]];
    p0 = Flatten[Position[w, 0]]  (* A260317 *)
    d = Differences[p0] (* A260311 *)

Formula

n <= a(n) < 5n, see Shallit comment. - Charles R Greathouse IV, Nov 22 2024

A289974 p-INVERT of the upper Wythoff sequence (A001950), where p(S) = 1 - S.

Original entry on oeis.org

2, 9, 35, 139, 549, 2169, 8571, 33866, 133817, 528755, 2089288, 8255476, 32620147, 128893113, 509299806, 2012413902, 7951720511, 31419907712, 124150565816, 490560415825, 1938368302977, 7659141579267, 30263830481105, 119582517950630, 472510530626342
Offset: 0

Views

Author

Clark Kimberling, Aug 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; r = 1 + GoldenRatio; s = Sum[Floor[k*r] x^k, {k, 1, z}]; p = 1 - s;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A001950 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x] , 1]  (* A289974 *)

A295540 Number of ways of writing n as the sum of a lower Wythoff number (A000201) and an upper Wythoff number (A001950), when zero is included in both sequences.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 4, 2, 3, 5, 1, 5, 5, 2, 7, 3, 5, 8, 1, 9, 5, 5, 10, 2, 9, 9, 3, 12, 5, 8, 13, 1, 13, 10, 5, 15, 5, 11, 15, 2, 17, 9, 9, 18, 3, 16, 15, 5, 20, 8, 13, 21, 1, 22, 13, 10, 23, 5, 19, 20, 5, 25, 11, 15, 26, 2, 25, 19, 9, 28, 9, 20, 27, 3, 30, 16, 15, 31, 5, 27, 25, 8, 33, 13, 21, 34, 1, 34, 23, 13, 36, 10, 27, 33, 5, 38, 19, 20, 39, 5, 35, 30, 11, 41, 15, 27, 41, 2, 43, 25, 19, 44, 9, 36, 37, 9, 46, 20, 27
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2017

Keywords

Comments

Note that floor(n*phi) and floor(n*phi^2), for n>=1, form Beatty sequences.

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + x^4 + 2*x^5 + 3*x^6 + x^7 + 4*x^8 + 2*x^9 + 3*x^10 + 5*x^11 + x^12 + 5*x^13 + 5*x^14 + 2*x^15 + 7*x^16 + 3*x^17 + 5*x^18 + 8*x^19 + x^20 + 9*x^21 + 5*x^22 + 5*x^23 + 10*x^24 + 2*x^25 + 9*x^26 + 9*x^27 + 3*x^28 + 12*x^29 + 5*x^30 + 8*x^31 + 13*x^32 + x^33 + 13*x^34 + 10*x^35 + 5*x^36 + 15*x^37 + 5*x^38 + 11*x^39 + 15*x^40 + 2*x^41 + 17*x^42 + 9*x^43 + 9*x^44 + 18*x^45 + 3*x^46 + 16*x^47 + 15*x^48 + 5*x^49 + 20*x^50 +...+ a(n)*x^n +...
such that A(x) = WL(x) * WU(x) where
WL(x) = 1 + x + x^3 + x^4 + x^6 + x^8 + x^9 + x^11 + x^12 + x^14 + x^16 + x^17 + x^19 + x^21 + x^22 + x^24 + x^25 + x^27 + x^29 + x^30 +...+ x^A000201(n) +...
WU(x) = 1 + x^2 + x^5 + x^7 + x^10 + x^13 + x^15 + x^18 + x^20 + x^23 + x^26 + x^28 + x^31 + x^34 + x^36 + x^39 + x^41 + x^44 + x^47 + x^49 +...+ x^A001950(n) +...
Terms equal 1 only at positions:
[0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, ..., Fibonacci(n+1)-1, ...].
		

Crossrefs

Programs

  • PARI
    {a(n) = my(phi = (1 + sqrt(5))/2, WL=1, WU=1);
    WL = sum(m=0,floor(n/phi)+1, x^floor(m*phi) +x*O(x^n));
    WU = sum(m=0,floor(n/phi^2)+1, x^floor(m*phi^2) +x*O(x^n));
    polcoeff(WL*WU,n)}
    for(n=0,120, print1(a(n),", "))

Formula

G.f.: [ Sum_{n>=0} x^floor(n*phi) ] * [ Sum_{n>=0} x^floor(n*phi^2) ], where phi = (1+sqrt(5))/2.
G.f.: [1 + Sum_{n>=1} x^A000201(n) ] * [1 + Sum_{n>=1} x^A001950(n) ], where A000201 and A001950 are the lower and upper Wythoff sequences, respectively.
a(Fibonacci(n+1)-1) = 1 for n>=1.
a(Fibonacci(n+2)-2) = Fibonacci(n) for n>=1.

A307295 If n is even, a(n) = A001950(n/2+1), otherwise a(n) = A001950((n-1)/2+1) + 1.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 102, 103, 104, 105
Offset: 0

Views

Author

N. J. A. Sloane, Apr 12 2019

Keywords

Comments

It follows from the definition that a(2i+1) = a(2i)+1 for all i.
From Jeffrey Shallit, Jun 06 2021: (Start)
This sequence consists of the nonzero distances between occurrences of 1 in the Fibonacci word A003849 (easily provable with the Walnut theorem-prover).
Alternatively, these are the positive n such that A003849(n-1) = 1 or A003849(n-2) = 1 (again, easily provable with the Walnut theorem-prover). (End)

References

  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date? [See Omega, a few lines below Table 2.]

Crossrefs

Programs

  • Python
    from math import isqrt
    def A307295(n): return ((m:=(n>>1)+1)+isqrt(5*m**2)>>1)+m+(n&1) # Chai Wah Wu, Aug 10 2022

A003250 The number m such that A001950(m) = A003231(A003234(n)).

Original entry on oeis.org

4, 11, 15, 22, 26, 29, 33, 40, 44, 51, 58, 62, 69, 73, 76, 80, 87, 91, 98, 102, 105, 109, 116, 120, 127, 134, 138, 145, 149, 152, 156, 163, 167, 174, 178, 181, 185, 192, 196, 199, 203, 210, 214, 221, 225, 228, 232, 239, 243, 250, 257, 261, 268, 272, 275, 279
Offset: 1

Views

Author

Keywords

Comments

This is the function named z in [Carlitz]. - Eric M. Schmidt, Aug 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

From Eric M. Schmidt, Aug 14 2014: (Start)
a(n) = ceiling((1/phi^2) * A003231(A003234(n))), where phi is the golden ratio.
a(n) = 5*k - 1 - A003231(k), where k = A003234(n). [Cf. Theorems 4.1(ii) and 5.9(vii) in Carlitz.]
Conjecture: a(n) = floor((3-phi)*A003234(n)).
(End)

Extensions

More terms and a definition from Eric M. Schmidt, Aug 14 2014

A023654 Convolution of (F(2), F(3), F(4), ...) and A001950.

Original entry on oeis.org

2, 9, 23, 49, 95, 172, 300, 510, 853, 1412, 2319, 3790, 6174, 10034, 16283, 26397, 42765, 69253, 112114, 181468, 293688, 475267, 769072, 1244461, 2013660, 3258254, 5272052, 8530449
Offset: 1

Views

Author

Keywords

A023668 Convolution of A001950 and A023533.

Original entry on oeis.org

2, 5, 7, 12, 18, 22, 28, 33, 38, 46, 53, 61, 70, 77, 85, 93, 100, 109, 116, 126, 137, 147, 158, 168, 178, 190, 199, 210, 221, 230, 242, 252, 262, 274, 285, 299, 312, 324, 339, 350, 364, 377, 390, 404, 416, 429, 444, 455, 469, 482, 494, 509, 521
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[Floor(k*(3+Sqrt(5))/2)*A023533(n-k+1): k in [1..n]]): n in [1..80]]; // G. C. Greubel, Jul 18 2022
    
  • Mathematica
    A023668[n_, k_]:= A023668[n, k]= Sum[Floor[(k+1 +Binomial[n+2,3] -Binomial[j+2, 3])*GoldenRatio^2], {j, n}];
    Table[A023668[n, k], {n, 7}, {k,0,n*(n+3)/2}] (* G. C. Greubel, Jul 18 2022 *)
  • SageMath
    def A023668(n, k): return sum( floor((k+1 + binomial(n+2,3) - binomial(j+2,3))*golden_ratio^2) for j in (1..n) )
    flatten([[A023668(n,k) for k in (0..n*(n+3)/2)] for n in (1..7)]) # G. C. Greubel, Jul 18 2022

Formula

a(n) = Sum_{j=1..n} A001950(j) * A023533(n-j+1).
T(n, k) = Sum_{j=1..n} A001950(k+1 +binomial(n+2,3) -binomial(j+2,3)), for 0 <= k <= n*(n+3)/2, n >= 1 (as an irregular triangle). - G. C. Greubel, Jul 18 2022

A023867 a(n) = 1*t(n) + 2*t(n-1) + ...+ k*t(n+1-k), where k=floor((n+1)/2) and t is A001950 (upper Wythoff sequence).

Original entry on oeis.org

2, 5, 17, 24, 54, 71, 127, 153, 242, 279, 409, 465, 645, 717, 954, 1052, 1354, 1473, 1848, 1989, 2444, 2620, 3164, 3367, 4007, 4239, 4983, 5260, 6116, 6426, 7402, 7764, 8868, 9269, 10509, 10950, 12333, 12835, 14370, 14917, 16611, 17226, 19087, 19752, 21788, 22504
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    f:= func< n | n + Floor(n*(1+Sqrt(5))/2) >;
    [(&+[j*f(n+1-j): j in [1..Floor((n+1)/2)]]): n in [1..50]]; // G. C. Greubel, Jun 12 2019
    
  • Mathematica
    f[n_]:= n +Floor[n*GoldenRatio]; Table[Sum[j*f[n+1-j], {j,1,Floor[(n + 1)/2]}], {n, 1, 50}] (* G. C. Greubel, Jun 12 2019 *)
  • PARI
    f(n) = n + floor(n*(1+sqrt(5))/2);
    a(n) = sum(j=1, floor((n+1)/2), j*f(n+1-j)); \\ G. C. Greubel, Jun 12 2019
    
  • Sage
    def f(n): return n + floor(n*golden_ratio)
    [sum(j*f(n+1-j) for j in (1..floor((n+1)/2))) for n in (1..50)] # G. C. Greubel, Jun 12 2019

Extensions

Title simplified by Sean A. Irvine, Jun 12 2019

A024690 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A001950 (upper Wythoff sequence), t = A023533.

Original entry on oeis.org

2, 0, 0, 2, 5, 7, 10, 0, 0, 2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 43, 49, 54, 59, 65, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 59, 65, 69, 75, 81, 85, 91, 95, 101, 107, 111, 117, 123, 127, 39, 41, 44, 47, 49, 52
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Previous Showing 31-40 of 259 results. Next