cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A056332 Number of primitive (aperiodic) reversible string structures with n beads using a maximum of three different colors.

Original entry on oeis.org

1, 1, 3, 8, 24, 65, 195, 564, 1677, 4976, 14883, 44452, 133224, 399113, 1196808, 3588840, 10764960, 32289855, 96864963, 290580040, 871725426, 2615132465, 7845353475, 23535926760, 70607649816, 211822550576
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    a1998[n_] := If[OddQ[n], (1/4)*(3^n + 4*3^((n-1)/2) + 1), (1/4)*(3^n + 2*3^(n/2) + 1)];
    a[n_] := DivisorSum[n, MoebiusMu[#] a1998[n/#-1]&];
    Array[a, 26] (* Jean-François Alcover, Jun 29 2018 *)

Formula

a(n) = Sum mu(d)*A001998(n/d-1) where d|n.

A038766 Triangle giving number of unbranched catapolytetragons, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 2, 1, 3, 9, 7, 4, 1, 5, 16, 29, 23, 10, 1, 5, 27, 62, 99, 69, 25, 1, 7, 39, 132, 275, 351, 229, 70, 1, 7, 55, 221, 643, 1121, 1249, 731, 196, 1, 9, 72, 367, 1278, 2997, 4584, 4437, 2385, 574, 1, 9, 93, 540, 2322, 6678, 13458, 18012, 15597, 7657, 1681
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Examples

			1; 1,1; 1,1,1; 1,3,3,2; 1,3,9,7,4; ...
		

References

  • S. J. Cyvin et al., Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.

Crossrefs

Last diagonal is A001998.
LCM's of all cycles: A060113.

A323942 Irregular triangle read by rows giving the total number of isomers (nonisomorphic systems) of unbranched k-4-catafusenes.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 1, 4, 7, 9, 3, 1, 10, 23, 29, 16, 5, 1, 25, 69, 99, 62, 27, 5, 1, 70, 229, 351, 275, 132, 39, 7, 1, 196, 731, 1249, 1121, 643, 221, 55, 7, 1, 574, 2385, 4437, 4584, 2997, 1278, 367, 72, 9, 1, 1681, 7657, 15597, 18012, 13458, 6678, 2322, 540, 93, 9, 1
Offset: 2

Views

Author

N. J. A. Sloane, Feb 09 2019

Keywords

Comments

From Petros Hadjicostas, May 26 2019: (Start)
Let I(r, k) be the total number of isomers (nonisomorphic systems) of unbranched k-4-catafusenes, which are generated from catafusenes by converting k of its r hexagons to tetragons. According to Cyvin et al. (1996), for r >= k, we have I(r, k) = 1/4 *(binomial(r, k) + (r - 2)! * (r^2 + (4 * k - 1) * r + 4 * k * (k - 2)) * 3^(r - k - 2)/(k! * (r - k)!) + (2 + (-1)^k - (-1)^r) * (binomial(floor(r/2), floor(k/2)) + 2 * binomial(floor(r/2) - 1, floor(k/2) - 1)) * 3^(floor(r/2) - floor(k/2) - 1)). See Eq. (48) on p. 503 in the paper.
Letting k = 0 - 10, we get the eleven columns of Table 2 on p. 501 of Cyvin et al. (1996). (We need r >= max(k, 2) because the number of hexagons r should be greater than or equal to the number of converted polygons k.)
(End)

Examples

			Triangle begins (rows start at n = 2 and columns at k = 0):
     1,    1,     1;
     2,    3,     3,     1;
     4,    7,     9,     3,     1;
    10,   23,    29,    16,     5,    1;
    25,   69,    99,    62,    27,    5,    1;
    70,  229,   351,   275,   132,   39,    7,   1;
   196,  731,  1249,  1121,   643,  221,   55,   7,  1;
   574, 2385,  4437,  4584,  2997, 1278,  367,  72,  9, 1;
  1681, 7657, 15597, 18012, 13458, 6678, 2322, 540, 93, 9, 1;
  ...
		

Crossrefs

Column k = 0 is A001998. Column k = 3 is A323941.

Formula

For the element T(n, k) in row n >= 2 and column k >= 0 (such that max(k, 2) <= n), we have T(n, k) = I(r = n, k), where I(r, k) is given above in the comments. - Petros Hadjicostas, May 26 2019

Extensions

Name edited by Petros Hadjicostas, May 26 2019

A126026 Conjectured upper bound on area of the convex hull of any edge-to-edge connected system of regular unit hexagons (n-polyhexes).

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 10, 13, 17, 20, 24, 28, 33, 38, 43, 49, 55, 61, 68, 75, 82, 90, 97, 106, 114, 123, 133, 142, 152, 162, 173, 184, 195, 207, 219, 231, 244, 257, 270, 284, 297, 312, 326, 341, 357, 372, 388, 404, 421, 438, 455, 473, 491, 509, 528, 547, 566
Offset: 0

Views

Author

Jonathan Vos Post, Feb 27 2007

Keywords

Comments

Kurz proved the polyomino equivalent of this conjecture as A122133 and abstracts: "In this article we prove a conjecture of Bezdek, Brass and Harborth concerning the maximum volume of the convex hull of any facet-to-facet connected system of n unit hypercubes in the d-dimensional Euclidean space. For d=2 we enumerate the extremal polyominoes and determine the set of possible areas of the convex hull for each n."

Examples

			a(10) = 24 because floor((10^2 + 14*10/3 + 1)/6) = floor(24.6111111) = 24.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[(n^2+14n/3+1)/6],{n,0,80}] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    concat(0, Vec(x*(1 +x^2)*(1 -x^3 +2*x^4 -x^6 +x^7 +x^11 -x^13 +x^14 +x^15 -x^16) / ((1 -x)^3*(1 +x)*(1 -x +x^2)*(1 +x +x^2)*(1 -x^3 +x^6)*(1 +x^3 +x^6)) + O(x^50))) \\ Colin Barker, Oct 13 2016
    
  • PARI
    a(n) = (n^2 + 14*n/3 + 1)\6 \\ Charles R Greathouse IV, Oct 13 2016

Formula

a(n) = floor((n^2 + 14*n/3 + 1)/6).
G.f.: x*(1 +x^2)*(1 -x^3 +2*x^4 -x^6 +x^7 +x^11 -x^13 +x^14 +x^15 -x^16) / ((1 -x)^3*(1 +x)*(1 -x +x^2)*(1 +x +x^2)*(1 -x^3 +x^6)*(1 +x^3 +x^6)). - Colin Barker, Oct 13 2016

Extensions

More terms from Harvey P. Dale, Apr 11 2012
Offset changed to 0 by Colin Barker, Oct 13 2016

A323944 Irregular triangle read by rows: Numbers of unbranched k-5-catafusenes.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 1, 4, 8, 12, 5, 2, 10, 29, 48, 36, 15, 3, 25, 95, 193, 185, 114, 32, 6, 70, 329, 757, 933, 706, 316, 80, 10, 196, 1094, 2896, 4239, 3960, 2304, 866, 176, 20, 574, 3659, 10834, 18468, 20313, 14787, 7184, 2238, 408, 36, 1681, 12029, 39697, 76788, 97740, 84672, 51060, 20929, 5688, 896, 72
Offset: 2

Views

Author

N. J. A. Sloane, Feb 09 2019

Keywords

Examples

			Triangle begins:
1, 1, 1,
2, 3, 3, 1,
4, 8, 12, 5, 2,
10, 29, 48, 36, 15, 3,
25, 95, 193, 185, 114, 32, 6,
70, 329, 757, 933, 706, 316, 80, 10,
196, 1094, 2896, 4239, 3960, 2304, 866, 176, 20,
574, 3659, 10834, 18468, 20313, 14787, 7184, 2238, 408, 36,
1681, 12029, 39697, 76788, 97740, 84672, 51060, 20929, 5688, 896, 72,
...
		

Crossrefs

First column is A001998.
Previous Showing 21-25 of 25 results.