A056332
Number of primitive (aperiodic) reversible string structures with n beads using a maximum of three different colors.
Original entry on oeis.org
1, 1, 3, 8, 24, 65, 195, 564, 1677, 4976, 14883, 44452, 133224, 399113, 1196808, 3588840, 10764960, 32289855, 96864963, 290580040, 871725426, 2615132465, 7845353475, 23535926760, 70607649816, 211822550576
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
a1998[n_] := If[OddQ[n], (1/4)*(3^n + 4*3^((n-1)/2) + 1), (1/4)*(3^n + 2*3^(n/2) + 1)];
a[n_] := DivisorSum[n, MoebiusMu[#] a1998[n/#-1]&];
Array[a, 26] (* Jean-François Alcover, Jun 29 2018 *)
A038766
Triangle giving number of unbranched catapolytetragons, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 3, 2, 1, 3, 9, 7, 4, 1, 5, 16, 29, 23, 10, 1, 5, 27, 62, 99, 69, 25, 1, 7, 39, 132, 275, 351, 229, 70, 1, 7, 55, 221, 643, 1121, 1249, 731, 196, 1, 9, 72, 367, 1278, 2997, 4584, 4437, 2385, 574, 1, 9, 93, 540, 2322, 6678, 13458, 18012, 15597, 7657, 1681
Offset: 0
1; 1,1; 1,1,1; 1,3,3,2; 1,3,9,7,4; ...
- S. J. Cyvin et al., Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
A323942
Irregular triangle read by rows giving the total number of isomers (nonisomorphic systems) of unbranched k-4-catafusenes.
Original entry on oeis.org
1, 1, 1, 2, 3, 3, 1, 4, 7, 9, 3, 1, 10, 23, 29, 16, 5, 1, 25, 69, 99, 62, 27, 5, 1, 70, 229, 351, 275, 132, 39, 7, 1, 196, 731, 1249, 1121, 643, 221, 55, 7, 1, 574, 2385, 4437, 4584, 2997, 1278, 367, 72, 9, 1, 1681, 7657, 15597, 18012, 13458, 6678, 2322, 540, 93, 9, 1
Offset: 2
Triangle begins (rows start at n = 2 and columns at k = 0):
1, 1, 1;
2, 3, 3, 1;
4, 7, 9, 3, 1;
10, 23, 29, 16, 5, 1;
25, 69, 99, 62, 27, 5, 1;
70, 229, 351, 275, 132, 39, 7, 1;
196, 731, 1249, 1121, 643, 221, 55, 7, 1;
574, 2385, 4437, 4584, 2997, 1278, 367, 72, 9, 1;
1681, 7657, 15597, 18012, 13458, 6678, 2322, 540, 93, 9, 1;
...
A126026
Conjectured upper bound on area of the convex hull of any edge-to-edge connected system of regular unit hexagons (n-polyhexes).
Original entry on oeis.org
0, 1, 2, 4, 5, 8, 10, 13, 17, 20, 24, 28, 33, 38, 43, 49, 55, 61, 68, 75, 82, 90, 97, 106, 114, 123, 133, 142, 152, 162, 173, 184, 195, 207, 219, 231, 244, 257, 270, 284, 297, 312, 326, 341, 357, 372, 388, 404, 421, 438, 455, 473, 491, 509, 528, 547, 566
Offset: 0
a(10) = 24 because floor((10^2 + 14*10/3 + 1)/6) = floor(24.6111111) = 24.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Sascha Kurz, Convex hulls of polyominoes, arXiv:math/0702786 [math.CO], Feb 26 2007. See conjecture 2, p. 12.
- Eric Weisstein's World of Mathematics, Polyhex.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,1).
-
Table[Floor[(n^2+14n/3+1)/6],{n,0,80}] (* Harvey P. Dale, Apr 11 2012 *)
-
concat(0, Vec(x*(1 +x^2)*(1 -x^3 +2*x^4 -x^6 +x^7 +x^11 -x^13 +x^14 +x^15 -x^16) / ((1 -x)^3*(1 +x)*(1 -x +x^2)*(1 +x +x^2)*(1 -x^3 +x^6)*(1 +x^3 +x^6)) + O(x^50))) \\ Colin Barker, Oct 13 2016
-
a(n) = (n^2 + 14*n/3 + 1)\6 \\ Charles R Greathouse IV, Oct 13 2016
A323944
Irregular triangle read by rows: Numbers of unbranched k-5-catafusenes.
Original entry on oeis.org
1, 1, 1, 2, 3, 3, 1, 4, 8, 12, 5, 2, 10, 29, 48, 36, 15, 3, 25, 95, 193, 185, 114, 32, 6, 70, 329, 757, 933, 706, 316, 80, 10, 196, 1094, 2896, 4239, 3960, 2304, 866, 176, 20, 574, 3659, 10834, 18468, 20313, 14787, 7184, 2238, 408, 36, 1681, 12029, 39697, 76788, 97740, 84672, 51060, 20929, 5688, 896, 72
Offset: 2
Triangle begins:
1, 1, 1,
2, 3, 3, 1,
4, 8, 12, 5, 2,
10, 29, 48, 36, 15, 3,
25, 95, 193, 185, 114, 32, 6,
70, 329, 757, 933, 706, 316, 80, 10,
196, 1094, 2896, 4239, 3960, 2304, 866, 176, 20,
574, 3659, 10834, 18468, 20313, 14787, 7184, 2238, 408, 36,
1681, 12029, 39697, 76788, 97740, 84672, 51060, 20929, 5688, 896, 72,
...
Comments