cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A322951 Numbers k such that 319*2^k+1 is prime.

Original entry on oeis.org

2, 10, 18, 274, 314, 522, 562, 578, 594, 602, 930, 1074, 23826, 184554, 1923378, 2248914, 2290722, 3069362
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(319*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[319*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(16)-a(17) from Jeppe Stig Nielsen, Feb 25 2020
a(18) from Jeppe Stig Nielsen, Dec 20 2024

A322952 Numbers k such that 321*2^k+1 is prime.

Original entry on oeis.org

1, 5, 32, 68, 109, 128, 133, 212, 241, 653, 776, 1339, 1787, 2659, 6388, 6547, 8365, 16699, 62861, 64795, 83227, 195376, 278875, 442480, 542876, 730321, 1168576, 1257859, 1629307, 4715725
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(321*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[321*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(30) from Jeppe Stig Nielsen, Dec 20 2024

A322954 Numbers k such that 323*2^k+1 is prime.

Original entry on oeis.org

1, 5, 145, 329, 381, 465, 3121, 4201, 4309, 12669, 13601, 17221, 33601, 41741, 46921, 65745, 80269, 384685, 1072285, 3482789
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(323*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[323*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(20) from Jeppe Stig Nielsen, Dec 20 2024

A322955 Numbers k such that 325*2^k+1 is prime.

Original entry on oeis.org

2, 14, 18, 32, 42, 72, 144, 174, 282, 318, 828, 1338, 2154, 2750, 4034, 9858, 13692, 49052, 63522, 86784, 117162, 126014, 273090, 302574, 413862, 901902, 3231474, 4097700
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(325*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[325*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(27)-a(28) from Jeppe Stig Nielsen, Dec 20 2024

A322956 Numbers k such that 327*2^k+1 is prime.

Original entry on oeis.org

3, 4, 6, 15, 30, 64, 99, 108, 135, 363, 414, 531, 576, 811, 1326, 1414, 1476, 1936, 2371, 3951, 4195, 13324, 21696, 23203, 35790, 46950, 51756, 55174, 61876, 92487, 134104, 691951, 706915, 1743751
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(327*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[327*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

A322958 Numbers k such that 331*2^k+1 is prime.

Original entry on oeis.org

4, 8, 12, 20, 28, 36, 120, 184, 200, 756, 788, 1304, 6412, 7848, 12944, 40116, 45056, 67520, 129172, 204592, 225568, 615116, 803668, 1646668, 2917844
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(331*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[331*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(25) from Jeppe Stig Nielsen, Dec 20 2024

A322959 Numbers k such that 333*2^k+1 is prime.

Original entry on oeis.org

5, 6, 9, 18, 25, 33, 50, 54, 69, 70, 101, 153, 176, 245, 401, 448, 745, 768, 806, 840, 1338, 1718, 3504, 4164, 5581, 5729, 6010, 6705, 8076, 10233, 12169, 13345, 55285, 58138, 113589, 197820, 203453, 238130, 364946, 817201, 1068320, 1708106, 1837105
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(333*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[333*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

A322960 Numbers k such that 335*2^k+1 is prime.

Original entry on oeis.org

19, 23, 29, 173, 263, 295, 659, 803, 1075, 1087, 1129, 1189, 3173, 4519, 16277, 44425, 67069, 103789, 151319, 189379, 323767, 356029, 409429, 528439, 1335337, 3266237
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(335*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[335*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(26) from Jeppe Stig Nielsen, Dec 20 2024

A322961 Numbers k such that 337*2^k+1 is prime.

Original entry on oeis.org

4, 6, 10, 26, 64, 66, 70, 102, 322, 370, 570, 1750, 1782, 1974, 2482, 6886, 7782, 9784, 20476, 34826, 37546, 46566, 47800, 132962, 184230, 257930, 286554, 370274, 544852, 648856, 2585660, 2750860, 3274106
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(337*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[337*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(31)-a(32) from Jeppe Stig Nielsen, Dec 27 2019
a(33) from Jeppe Stig Nielsen, Dec 20 2024

A322962 Numbers k such that 339*2^k+1 is prime.

Original entry on oeis.org

3, 11, 17, 21, 26, 50, 62, 125, 165, 278, 290, 1227, 1275, 1325, 2153, 2450, 2811, 3327, 5921, 6321, 7095, 8657, 8786, 9687, 12221, 14163, 30686, 63975, 73767, 132551, 356991, 364797, 442065, 464483, 559637, 632297, 972755, 1685135, 2408337, 3974295, 4592225
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(339*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[339*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(39) from Jeppe Stig Nielsen, Jan 04 2020
a(40)-a(41) from Jeppe Stig Nielsen, Dec 20 2024
Previous Showing 11-20 of 22 results. Next