cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 73 results. Next

A351794 Decimal expansion of Sum_{k>=1} AH(k)*L(k)/2^k, where AH(k) = A058313(k)/A058312(k) is the k-th alternating harmonic number and L(k) = A000032(k) is the k-th Lucas number.

Original entry on oeis.org

2, 8, 2, 1, 4, 7, 5, 3, 5, 8, 7, 6, 2, 6, 4, 9, 4, 6, 1, 7, 4, 6, 0, 5, 1, 4, 3, 5, 6, 8, 2, 5, 3, 0, 6, 3, 7, 2, 4, 6, 6, 5, 6, 6, 6, 9, 3, 4, 5, 4, 6, 9, 9, 1, 4, 7, 9, 8, 8, 9, 4, 1, 3, 7, 4, 2, 4, 9, 8, 1, 3, 0, 8, 6, 1, 0, 4, 6, 4, 8, 0, 7, 0, 6, 2, 6, 7, 2, 9, 9, 5, 7, 8, 7, 1, 2, 6, 4, 8, 4, 1, 7, 9, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2022

Keywords

Examples

			2.82147535876264946174605143568253063724665666934546...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[3*Log[5/4] + 10*Log[GoldenRatio]/Sqrt[5], 10, 100][[1]]

Formula

Equals 3*log(5/4) + 10*log(phi)/sqrt(5), where phi is the golden ratio (A001622).
Equals (4/3)*log(5/4) + (5/3)*A351789.

A370742 Decimal expansion of Sum_{k>=2} H(k-1) * F(k) / (k*2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and F(k) = A000045(k) is the k-th Fibonacci number.

Original entry on oeis.org

5, 9, 6, 6, 7, 3, 4, 8, 7, 8, 3, 3, 9, 8, 2, 6, 9, 7, 3, 7, 7, 7, 0, 6, 8, 2, 4, 3, 6, 8, 3, 3, 0, 8, 3, 9, 2, 4, 6, 8, 7, 9, 6, 7, 0, 4, 2, 1, 8, 3, 8, 8, 2, 8, 2, 8, 6, 6, 0, 6, 1, 5, 1, 7, 6, 4, 1, 9, 6, 3, 6, 7, 5, 0, 1, 0, 6, 9, 8, 1, 2, 4, 3, 9, 9, 1, 8, 2, 3, 9, 6, 8, 1, 6, 1, 1, 0, 9, 3, 9, 6, 9, 5, 3, 7
Offset: 0

Views

Author

Amiram Eldar, Feb 29 2024

Keywords

Examples

			0.59667348783398269737770682436833083924687967042183...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4 * Log[2] * Log[GoldenRatio] / Sqrt[5], 10, 120][[1]]
  • PARI
    4 * log(2) * log(quadgen(5)) / sqrt(5)

Formula

Equals 4 * log(2) * log(phi) / sqrt(5), where phi is the golden ratio (A001622) (Davenport, 2018).

A370743 Decimal expansion of Sum_{k>=2} H(k-1) * L(k) / (k*2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and L(k) = A000032(k) is the k-th Lucas number.

Original entry on oeis.org

1, 4, 0, 6, 7, 1, 2, 2, 9, 6, 2, 2, 6, 9, 7, 8, 9, 9, 4, 6, 5, 4, 8, 1, 8, 8, 1, 1, 2, 5, 2, 7, 9, 6, 0, 1, 1, 7, 9, 6, 1, 7, 8, 3, 5, 1, 7, 9, 1, 7, 4, 1, 0, 7, 0, 1, 2, 8, 0, 6, 9, 0, 4, 8, 3, 8, 2, 8, 4, 6, 7, 6, 4, 5, 2, 7, 6, 8, 1, 7, 2, 4, 1, 4, 0, 1, 6, 6, 4, 5, 1, 7, 8, 9, 4, 8, 0, 5, 7, 1, 1, 5, 5, 6, 8
Offset: 1

Views

Author

Amiram Eldar, Feb 29 2024

Keywords

Examples

			1.40671229622697899465481881125279601179617835179174...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[2]^2 + 4*Log[GoldenRatio]^2, 10, 120][[1]]
  • PARI
    log(2)^2 + 4*log(quadgen(5))^2

Formula

Equals log(2)^2 + 4*log(phi)^2, where phi is the golden ratio (A001622) (Davenport, 2018).

A119579 a(n) = (n + n^2)*(binomial(2*n, n)).

Original entry on oeis.org

0, 4, 36, 240, 1400, 7560, 38808, 192192, 926640, 4375800, 20323160, 93117024, 421848336, 1892909200, 8424486000, 37228204800, 163493866080, 714083503320, 3103696272600, 13431200244000, 57895542104400, 248675137991280
Offset: 0

Views

Author

Zerinvary Lajos, May 31 2006

Keywords

Crossrefs

Programs

  • Maple
    [seq ((n+n^2)*(binomial(2*n,n)),n=0..29)];
  • Mathematica
    Table[n*(n + 1)*Binomial[2*n, n], {n, 0, 20}] (* Amiram Eldar, Feb 20 2021 *)
  • PARI
    a(n) = (n + n^2)*(binomial(2*n, n)); \\ Michel Marcus, Feb 20 2021

Formula

From Amiram Eldar, Feb 20 2021: (Start)
a(n) = A002378(n)*A000984(n).
Sum_{n>=1} (-1)^(n+1)/a(n) = -1 + 2*sqrt(5)*log(phi) - 4*log(phi)^2, where log(phi) = A002390. (End)
Sum_{n>=1} 1/a(n) = Pi^2/9 - Pi/sqrt(3) + 1. - Amiram Eldar, Jan 24 2022

A145424 Decimal expansion of Sum_{n>=1} 1/(n*(25n^2-1)).

Original entry on oeis.org

0, 4, 9, 8, 0, 8, 5, 6, 6, 7, 4, 7, 6, 3, 0, 5, 1, 6, 8, 6, 2, 7, 4, 0, 7, 0, 7, 7, 2, 0, 9, 9, 1, 3, 3, 1, 1, 8, 7, 7, 1, 5, 0, 4, 6, 0, 1, 1, 0, 0, 9, 2, 2, 0, 8, 3, 7, 0, 6, 7, 4, 9, 4, 3, 3, 3, 4, 2, 5, 2, 5, 3, 9, 6, 0, 9, 8, 7, 1, 5, 7, 4, 8, 9, 5, 3, 0, 1, 7, 8, 4, 8, 7
Offset: 0

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Examples

			0.049808566747630516862...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, 1996, 4.1.26.

Crossrefs

Programs

  • Maple
    evalf(5*log(5)/4-5/2+sqrt(5)/2*log((1+sqrt(5))/2)) ;
  • Mathematica
    RealDigits[Log[GoldenRatio]*Sqrt[5]/2 - 5*(2 - Log[5])/4, 10, 120, -1][[1]] (* Amiram Eldar, Aug 23 2024 *)

Formula

Equals log(phi)*sqrt(5)/2 - 5*(2 - log(5))/4, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 23 2024

A157701 Decimal expansion of 2*(14*sigma+5)/625 where sigma = sqrt(5)*log(golden ratio).

Original entry on oeis.org

0, 6, 4, 2, 0, 5, 8, 0, 1, 3, 8, 7, 9, 6, 8, 4, 5, 2, 3, 5, 5, 6, 1, 6, 5, 2, 2, 0, 9, 0, 4, 6, 7, 8, 0, 7, 6, 4, 7, 5, 5, 1, 9, 1, 6, 4, 4, 4, 5, 1, 2, 4, 4, 1, 3, 3, 2, 7, 8, 4, 6, 8, 3, 6, 4, 7, 1, 6, 6, 8, 5, 6, 1, 3, 1, 6, 4, 6, 7, 7, 9, 6, 7, 2, 4, 8, 6, 9, 0, 9, 6, 4, 6, 0, 8, 8, 6, 3, 5, 0, 0, 5, 5, 0, 9
Offset: 0

Views

Author

R. J. Mathar, Mar 04 2009

Keywords

Comments

The factor 28 in the Lehmer paper has been corrected to 14.
Equals sum_{n=1..infinity} (-1)^n*n^3/binomial(2n,n).

Examples

			0.064205801387968452355..
		

Crossrefs

Programs

  • Maple
    2/625*(14*sqrt(5)*log((1+sqrt(5))/2)+5) ;
  • Mathematica
    Join[{0},RealDigits[2*(14*Sqrt[5]*Log[GoldenRatio]+5)/625,10,120][[1]]] (* Harvey P. Dale, Mar 13 2015 *)
  • PARI
    2*(14*sqrt(5)*log((sqrt(5)+1)/2)+5)/625 \\ Charles R Greathouse IV, May 15 2019

Formula

Equals 2*(14*A002163*A002390+5)/625 .

A245800 a(n) is the least number k such that Sum_{j=S(n)+1..S(n)+k} 1/j >= 1/2, where S(n) = Sum_{i=1..n-1} a(i) and S(1) = 0.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 14, 24, 39, 64, 106, 175, 288, 475, 783, 1291, 2129, 3510, 5787, 9541, 15730, 25935, 42759, 70498, 116232, 191634, 315951, 520915, 858844, 1415994, 2334579, 3849070, 6346044, 10462858, 17250336, 28440996, 46891275, 77310643, 127463701, 210152115, 346482262
Offset: 1

Views

Author

Rob van den Tillaart, Aug 22 2014

Keywords

Comments

The limiting ratio of consecutive terms is sqrt(e) ~ 1.648721270700128.
Conjecture 1: If the summation threshold (which, for this sequence, is defined as 1/2) is set to any positive number R, then the limiting ratio of consecutive terms in the resulting sequence is e^R.
Conjecture 2: If the summation threshold is set to log(phi) = 0.4812118250..., then the Fibonacci sequence is generated.
Partition the harmonic series into the smallest-sized groups that sum to 1/2 or greater. You get 1, 1/2, 1/3 + 1/4, 1/5 + 1/6 + 1/7, 1/8 + 1/9 + 1/10 + 1/11 + 1/12, 1/13 + 1/14 + ... + 1/21, 1/22 + ... ; a(n) gives the number of terms in the n-th group. - Derek Orr, Nov 08 2014
A partition sums to exactly 1/2 for only n=2. - Jon Perry, Nov 09 2014

Examples

			Start with 1/1; 1/1 >= 1/2, so a(1) = 1.
1/1 has been used, so start a new sum with 1/2; 1/2 >= 1/2, so a(2) = 1.
1/1 and 1/2 have been used, so start a new sum with 1/3; 1/3 + 1/4 >= 1/2, so a(3) = 2.
1/1 through 1/4 have been used, so start a new sum with 1/5; 1/5 + 1/6 + 1/7 >= 1/2, so a(4) = 3, etc.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {n = 1; while (n < nn, k = 1; while (sum(x=n, n+k-1, 1/x) < 1/2, k++); print1(k, ", "); n = n+k;);} \\ Michel Marcus, Sep 14 2014
    
  • PARI
    a(n)=if(n==1,return(1));p=sum(i=1,n-1,a(i));k=1;while(sum(x=p+1,p+k,1/x)<1/2,k++);k
    n=1;while(n<100,print1(a(n),", ");n++) \\ Derek Orr, Oct 16 2014
  • Python
    import math
    total = 0
    prev = 1
    count = 0
    for n in range(1, 10**7):
        total = total + 1/n
        count = count + 1
        if (total >= 0.5):
            print(count,end=', ')
            prev = count
            total = 0
            count = 0
     
    print("\ndone")
    print(math.sqrt(math.e))
    # Rob van den Tillaart, Aug 22 2014 [Corrected by Derek Orr, Oct 16 2014]
    
  • Python
    def a(n):
      if n == 1:
        return 1
      tot,c,k = 0,0,0
      for x in range(1,10**7):
        tot += 1/x
        if tot >= 0.5:
          k += 1
          tot = 0
        if k == n-1:
          c += 1
        if k == n:
          return c
    n = 1
    while n < 100:
      print(a(n),end=', ')
      n += 1
    # Derek Orr, Oct 16 2014
    

Extensions

Edited by Derek Orr, Nov 08 2014

A278765 Engel expansion of natural logarithm of golden ratio.

Original entry on oeis.org

3, 3, 4, 4, 4, 6, 15, 48, 118, 147, 671, 1026, 3075, 44641, 48364, 1868380, 75080506, 96848501, 911582093, 2511879981, 8700005050, 15888441652, 108526838262, 446779835336, 632466801279, 1084794852728, 1184722346307, 1657692322844, 12376968750845, 17341469111712, 27996895637798, 38935285631573
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Examples

			log(phi)  = 0.4812118250596... = 1/3 + 1/(3*3) + 1/(3*3*4) + 1/(3*3*4*4) + 1/(3*3*4*4*4) + 1/(3*3*4*4*4*6) + ...
		

Crossrefs

Cf. A006784 (for definition of Engel expansion).

Programs

  • Mathematica
    EngelExp[A_, n_]:=Join[Array[1&, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]], Expand[ #[[1]]#[[2]]-1]}&, {Ceiling[1/(A-Floor[A])], A-Floor[A]}, n-1]]; EngelExp[N[Log[GoldenRatio], 7! ], 40]

A309408 Start with X = F(n) = A000045(n). Repeatedly replace X with X - ceiling(X/n); a(n) is the number of steps to reach 0.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 29, 36, 44, 53, 63, 74, 85, 98, 111, 125, 140, 157, 174, 192, 211, 231, 251, 273, 296, 319, 343, 369, 395, 423, 451, 481, 510, 541, 573, 606, 640, 675, 710, 747, 785, 823, 863, 903, 944, 987, 1030, 1074, 1119, 1165, 1212, 1260, 1309, 1359, 1409, 1462, 1514, 1568, 1622, 1678, 1734, 1791
Offset: 0

Views

Author

A.H.M. Smeets, Jul 29 2019

Keywords

Comments

Inspired by A278586.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[NestWhileList[# - Ceiling[#/n] &, Fibonacci[n], # > 0 &]] - 1; f /@ Range[0,70] (* Amiram Eldar, Aug 08 2019 *)
  • PARI
    f(x, n) = x - ceil(x/n);
    a(n) = my(nb=0, x=fibonacci(n)); while(x, x = f(x, n); nb++); nb; \\ Michel Marcus, Aug 03 2019
  • Python
    n, f1, f0 = 0, 0, 1
    while n <= 20000:
        fn, a = f1, 0
        while fn > 0:
            fn, a = fn - (fn+n-1)//n, a+1
        print(n,a)
        n, f1, f0 = n+1, f0, f1+f0
    

Formula

Lim_{n -> inf} (a(n)/(n^2)) = log(phi) = A002390.
a(n) = n^2*log(phi) - n*log(n) + O(n), phi = (1+sqrt(5))/2.
Lim_{n -> inf} (a(n) - n^2*log(phi) + n*log(n))/ n = -0.4681... .

A335605 Decimal expansion of arctan(log(phi)/(Pi/2)), the polar slope angle (in radians) of the golden spiral.

Original entry on oeis.org

2, 9, 7, 2, 7, 1, 3, 0, 4, 7, 0, 5, 3, 0, 5, 1, 7, 3, 6, 2, 9, 9, 4, 8, 1, 0, 3, 1, 7, 2, 1, 4, 6, 2, 2, 9, 9, 5, 4, 2, 4, 7, 9, 8, 0, 3, 2, 4, 4, 2, 3, 9, 5, 1, 2, 6, 0, 2, 5, 8, 3, 1, 4, 0, 3, 1, 2, 7, 9, 8, 8, 3, 7, 8, 2, 9, 9, 9, 4, 3, 7, 8, 7, 9, 6, 6, 1, 8, 5, 2, 1, 9, 2, 4, 5, 7, 2, 2, 9, 5, 0, 2, 4, 1
Offset: 0

Views

Author

Stefano Occhetti, Jun 15 2020

Keywords

Comments

In the polar equation for a logarithmic spiral: r = a*e^(b*theta), b represents the tangent of angle alpha, where alpha is the polar slope of the curve. In a golden spiral equation, b = log(phi)/(Pi/2) (being: log the natural logarithm; phi the golden ratio: 1.61803398...), therefore, alpha = arctan(log(phi)/(Pi/2)).

Examples

			0.29727130470530517362994810317214622995424798032442...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcTan[2 * Log[GoldenRatio]/Pi], 10, 100][[1]] (* Amiram Eldar, Jun 15 2020 *)
  • PARI
    atan(log(((1+sqrt(5))/2))/(Pi/2))

Formula

alpha = arctan(log(phi)/(Pi/2)).
Equals arctan(A212225). - Amiram Eldar, Jun 15 2020
Previous Showing 61-70 of 73 results. Next