cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A229124 Scan decimal expansion of log(10) until all n-digit strings have been seen; a(n) is number of digits that must be scanned.

Original entry on oeis.org

22, 701, 7486, 88092, 1189434, 13426407
Offset: 1

Views

Author

Eric W. Weisstein, Sep 14 2013

Keywords

Crossrefs

Cf. A002392 (decimal expansion of log(10)).
Cf. A229126 (last n-digit string seen when scanning the decimal digits of log(10)).

A229126 Last n-digit number seen when scanning the decimal digits of log(10).

Original entry on oeis.org

7, 38, 351, 8493, 33058, 362945
Offset: 1

Views

Author

Eric W. Weisstein, Sep 14 2013

Keywords

Crossrefs

Cf. A002392 (decimal expansion of log(10)).
Cf. A229124 (number of digits that must be scanned in the decimal expansion of log(10) to see all n-digit strings).

A229197 Beginning position of n in the decimal expansion of log(10).

Original entry on oeis.org

3, 21, 1, 2, 13, 5, 17, 22, 6, 9, 41, 40, 322, 368, 25, 266, 154, 21, 398, 103, 35, 236, 112, 1, 79, 4, 70, 60, 48, 10, 2, 190, 59, 57, 101, 77, 32, 178, 700, 197, 13, 102, 34, 31, 253, 15, 28, 251, 44, 277, 7
Offset: 0

Views

Author

Eric W. Weisstein, Sep 15 2013

Keywords

Crossrefs

Cf. A002392 (decimal expansion of log(10)).

Programs

  • Mathematica
    Module[{d=RealDigits[Log[10],10,1000][[1]]}, Table[SequencePosition[ d, IntegerDigits[ n],1][[All,1]],{n,0,50}]]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 28 2019 *)

A334388 Decimal expansion of Sum_{k>=1} A007953(k) / (k*(k+1)) where A007953(k) is the sum of digits of the integer k.

Original entry on oeis.org

2, 5, 5, 8, 4, 2, 7, 8, 8, 1, 1, 0, 4, 4, 9, 5, 2, 0, 4, 4, 6, 4, 4, 3, 4, 9, 4, 9, 6, 4, 9, 2, 9, 3, 5, 6, 4, 0, 0, 1, 2, 2, 3, 8, 7, 6, 2, 5, 4, 1, 9, 2, 1, 9, 5, 5, 9, 2, 5, 8, 6, 5, 5, 6, 6, 3, 0, 6, 3, 6, 2, 3, 2, 9, 7, 4, 8, 3, 6, 0, 8, 9, 1, 5, 1, 1, 0, 8, 0, 0, 5, 6, 5, 5, 1, 0, 9, 2, 2, 0
Offset: 1

Views

Author

Bernard Schott, Sep 08 2020

Keywords

Comments

This series is convergent.
Jeffrey Shallit generalizes this result to any base b (see Amer. Math. Month. link): Sum_{k>=1} digsum(k)_b / (k*(k+1)) = (b/(b-1)) * log(b) where digsum(k)_b is the sum of the digits of k when expressed in base b.
Sum_{n <= x} s(floor(x/n)) = kx + O(x^(2/3 + o(1))) where s(n) is the digital sum A007953 and k is this constant. See Bordellès, Dai, Heyman, Pan, & Shparlinski, Example 3.4. - Charles R Greathouse IV, Mar 22 2022

Examples

			2.5584278811044952044644349496492935640012238762541921955925865566
		

Crossrefs

Cf. A002392 (log(10)), A007953 (digsum), A016627 (for base 2).
Cf. A308314.

Programs

Formula

Equals 1/(1*2) + 2/(2*3) + 3/(3*4) + 4/(4*5) + ... + 1/(10*11) + 2/(11*12) + ...
Equals (10/9) * log(10).

Extensions

a(90) corrected by Georg Fischer, Jul 12 2021

A372597 Decimal expansion of (10/99)*log(10).

Original entry on oeis.org

2, 3, 2, 5, 8, 4, 3, 5, 2, 8, 2, 7, 6, 8, 1, 3, 8, 2, 2, 2, 4, 0, 3, 9, 5, 4, 0, 8, 7, 7, 2, 0, 8, 5, 0, 5, 8, 1, 8, 2, 9, 3, 0, 7, 9, 6, 5, 9, 4, 7, 2, 0, 1, 7, 7, 8, 1, 1, 4, 4, 2, 3, 2, 4, 2, 0, 9, 6, 6, 9, 3, 0, 2, 7, 0, 4, 3, 9, 6, 4, 4, 4, 6, 8, 2, 8, 2, 5, 4, 5
Offset: 0

Views

Author

Paolo Xausa, May 06 2024

Keywords

Examples

			0.2325843528276813822240395408772085058182930796594720...
		

Crossrefs

Cf. A002392.

Programs

Formula

Equals Sum_{k >= 1} e(k)/(k*(k + 1)), where e(k) is the reflection of k through the decimal point (e.g., e(120) = 0.021). See Sum 6 in Borwein and Borwein (1992), p. 623.

A111513 Decimal expansion of (abs(log_10(sine of 1 degree))).

Original entry on oeis.org

1, 7, 5, 8, 1, 4, 4, 6, 8, 1, 5, 7, 7, 1, 4, 3, 7, 8, 9, 8, 2, 1, 9, 3, 5, 8, 7, 6, 5, 7, 3, 6, 7, 8, 5, 6, 7, 6, 9, 2, 6, 8, 3, 9, 6, 3, 2, 0, 2, 0, 4, 6, 8, 0, 7, 2, 4, 7, 0, 6, 9, 3, 7, 1, 1, 4, 7, 5, 5, 8, 4, 0, 9, 7, 7, 4, 6, 2, 6, 8, 4, 0, 8, 0, 0, 1, 6, 0, 3, 7, 3, 9, 7, 2, 9, 5, 4, 1, 7, 6
Offset: 0

Views

Author

Mohammad K. Azarian, Nov 16 2005, Dec 11 2008

Keywords

Comments

Log denotes the common (base 10) logarithm in the definition, so the constant is A111511/A002392. [From R. J. Mathar, Jan 26 2009]

Crossrefs

Cf. A019810.

Programs

  • Mathematica
    RealDigits[Abs[Log[10,Sin[1 Degree]]],10,120][[1]] (* Harvey P. Dale, Jul 03 2024 *)

A111514 Decimal expansion of (abs(log_10(sine of 1 degree)))^(-1).

Original entry on oeis.org

5, 6, 8, 7, 8, 1, 4, 0, 3, 7, 5, 9, 6, 4, 3, 9, 1, 1, 2, 7, 0, 3, 0, 2, 5, 7, 5, 3, 3, 2, 0, 7, 3, 8, 5, 4, 3, 9, 2, 4, 7, 5, 8, 2, 2, 6, 4, 6, 9, 2, 5, 8, 6, 7, 2, 8, 4, 9, 2, 0, 8, 9, 9, 6, 1, 5, 2, 5, 8, 7, 5, 6, 3, 6, 9, 6, 4, 2, 0, 6, 0, 2, 5, 7, 9, 8, 7, 9, 8, 1, 6, 0, 9, 5, 0, 7, 5, 5, 0, 4
Offset: 0

Views

Author

Mohammad K. Azarian, Nov 16 2005

Keywords

Crossrefs

Cf. A019810.

Programs

  • Maple
    evalf(1/log[10](sin(Pi/180))); # R. J. Mathar, Apr 23 2009
  • Mathematica
    RealDigits[1/Abs[Log10[Sin[1 Degree]]],10,120][[1]] (* Harvey P. Dale, Jul 30 2023 *)

Formula

Equals A002392/A111511. - R. J. Mathar, Apr 23 2009

A220260 Decimal expansion of e / log_10(e), where e = A001113.

Original entry on oeis.org

6, 2, 5, 9, 0, 7, 5, 2, 1, 6, 7, 6, 6, 3, 9, 5, 2, 1, 1, 0, 1, 8, 4, 7, 7, 3, 1, 1, 6, 7, 7, 7, 2, 7, 2, 8, 0, 5, 4, 6, 4, 5, 9, 9, 5, 4, 2, 5, 9, 4, 6, 9, 4, 2, 4, 2, 7, 7, 6, 9, 8, 1, 6, 9, 8, 5, 8, 4, 5, 3, 9, 9, 1, 7, 4, 4, 2, 2, 9, 9, 2, 4, 2, 8, 4, 1, 2
Offset: 1

Views

Author

Jaroslav Krizek, Dec 08 2012

Keywords

Comments

Minimum value of the function x / log_10(x) for x > 1, obtained at x = e.

Examples

			6.2590752167663952110184773116777272805464599542594694...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E/Log[10,E],10,120][[1]] (* Harvey P. Dale, Dec 23 2012 *)

Formula

Equals the ratio A001113 / A002285 and also the product A001113*A002392.

A220261 Decimal expansion of (1/e) * log_10(e), where 1/e = A068985, log_10(e) = A002285.

Original entry on oeis.org

1, 5, 9, 7, 6, 8, 0, 1, 1, 3, 0, 6, 4, 0, 9, 3, 5, 2, 6, 7, 2, 1, 4, 4, 3, 2, 7, 7, 1, 3, 3, 1, 9, 3, 9, 0, 8, 5, 8, 7, 2, 4, 0, 5, 1, 6, 1, 5, 3, 4, 5, 1, 8, 8, 1, 4, 0, 9, 0, 9, 2, 6, 3, 8, 0, 7, 5, 6, 6, 6, 4, 7, 1, 6, 1, 0, 1, 1, 2, 0, 7, 9, 4, 9, 5, 8
Offset: 0

Views

Author

Jaroslav Krizek, Dec 08 2012

Keywords

Comments

Maximal value of function x * log_10(x) for x < 0 in x = -1/e.
-0,159768… = minimal value of function x * log_10(x) for x > 0 in x = 1/e.
Decimal expansion of 1 / (e * log(10)), where e = A001113, log(10) = A002392.

Examples

			0.15976801130640935267214...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/E Log10[E],10,120][[1]] (* Harvey P. Dale, Aug 11 2019 *)

A228243 First occurrence of n consecutive n's in the decimal expansion of log(10).

Original entry on oeis.org

20, 111, 56, 9041, 4767, 674596, 24611354, 64653957, 131278082
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2013

Keywords

Comments

Earls sequence for log(10).

Examples

			log(10) = 2.302585092994045684017...4228.., so
a(1) = 20 (the digit string 1 first occurs at position 20 after the decimal point)
a(2) = 111 (the digit string 22 first occurs starting at position 111 after the decimal point)
		

Crossrefs

Cf. A002392 (decimal expansion of log(10)).
Previous Showing 31-40 of 43 results. Next