A041263 Denominators of continued fraction convergents to sqrt(143).
1, 1, 23, 24, 551, 575, 13201, 13776, 316273, 330049, 7577351, 7907400, 181540151, 189447551, 4349386273, 4538833824, 104203730401, 108742564225, 2496540143351, 2605282707576, 59812759710023, 62418042417599, 1433009692897201, 1495427735314800
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Eric W. Weisstein, MathWorld: Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (0,24,0,-1).
Programs
-
Magma
I:=[1,1,23,24]; [n le 4 select I[n] else 24*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 14 2013
-
Mathematica
Denominator[Convergents[Sqrt[143], 30]] (* or *) CoefficientList[Series[(1 + x - x^2)/(x^4 - 24 x^2 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 14 2013 *)
Formula
G.f.: (1 + x - x^2)/(x^4 - 24*x^2 + 1). - Vincenzo Librandi, Dec 14 2013
a(n) = 24*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 14 2013
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(22) + sqrt(26) )/2 and beta = ( sqrt(22) - sqrt(26) )/2 be the roots of the equation x^2 - sqrt(22)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 22 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 22*a(2*n) + a(2*n - 1). (End)
Extensions
More terms from Vincenzo Librandi, Dec 14 2013
Comments