cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A370068 Number of nonequivalent directed unicursal star polygons (no edge joins adjacent vertices) that can be formed by connecting the vertices of a regular n-gon up to rotations.

Original entry on oeis.org

0, 0, 0, 0, 2, 1, 10, 47, 350, 3005, 28722, 302519, 3471738, 43181993, 578730766, 8317664191, 127644961618, 2083638325661, 36055062511490, 659316772258655, 12705552903848466, 257373902883624297, 5467702595346969530, 121562217391867941767
Offset: 1

Views

Author

Andrew Howroyd, Feb 23 2024

Keywords

Comments

Directed means that the direction of travel is significant.

Crossrefs

Cf. A002619 (if edges may join adjacent vertices), A231091 (undirected), A326411, A370459.

Programs

  • PARI
    Q(n,k)={subst(serlaplace(polcoef((1 - 2*x - x^2)/((1 + x)*(1 + (1 - y)*x + y*x^2)) + O(x^n), n-1)), y, k)}
    E(r,d)={eulerphi(d)*Q(r,d) + 2*(-1)^r}
    a370068(n)={if(n<3, 0, sumdiv(n,d,eulerphi(d)*E(n/d,d))/n)}

A047919 Triangular array read by rows: a(n,k) = Sum_{d|k} mu(d)*U(n,k/d)/n if k|n else 0, where U(n,k) = A047916(n,k) (1<=k<=n).

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 20, 2, 4, 6, 0, 0, 108, 6, 0, 0, 0, 0, 0, 714, 4, 4, 0, 40, 0, 0, 0, 4992, 6, 0, 30, 0, 0, 0, 0, 0, 40284, 4, 16, 0, 0, 380, 0, 0, 0, 0, 362480, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628790, 4, 8, 60, 312, 0, 3768, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

References

  • J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

Crossrefs

Divide n-th row of array A047918 by n.
Cf. A002024.

Programs

  • Haskell
    a047919 n k = a047919_tabl !! (n-1) !! (k-1)
    a047919_row n = a047919_tabl !! (n-1)
    a047919_tabl = zipWith (zipWith div) a047918_tabl a002024_tabl
    -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    U[n_, k_] := If[Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; a[n_, k_] := Sum[If[Divisible[n, k], MoebiusMu[d]*U[n, k/d], 0], {d, Divisors[k]}]; row[n_] := Table[a[n, k], {k, 1, n}]/n; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Nov 21 2012, after A047918 *)

Extensions

Offset corrected by Reinhard Zumkeller, Mar 19 2014

A384630 Number of self-inverse double cosets in Z_n\S_n/Z_n.

Original entry on oeis.org

1, 1, 2, 3, 6, 14, 34, 98, 294, 952, 3246, 11698, 43732, 170752, 689996, 2888034, 12458784, 55406422, 253142182, 1187934740, 5712033368, 28131119956, 141645386202, 728841303696, 3827217750492, 20499431084644, 111876916526070, 621831335167486, 3516904353610572
Offset: 1

Views

Author

Ludovic Schwob, Jun 05 2025

Keywords

Comments

Z_n is the cyclic group of order n, seen as a subgroup of the symmetric group S_n.
Cosets in S_n/Z_n are in bijection with cycles obtained by connecting cyclically n equally spaced points on a circle. Double cosets in Z_n\S_n/Z_n are in bijection with cycles up to rotation.

Crossrefs

Cf. A000142 (cycles), A002619 (cycles up to rotation), A384631 (self-inverse polygons).

Programs

  • Python
    # From Proposition 4.1 in the reference:
    from sympy import factorial,divisors,totient
    def A384630(n):
        s = 0
        if n%2==0:
            for d in divisors(n//2):
                if d%2==0:
                    s += totient(d)*(d//2)**(n//2//d)*factorial(n//d)//factorial(n//2//d)
                else:
                    s += totient(d)*sum(factorial(n//d)*d**i//2**i//factorial(i)//factorial(n//d-2*i) for i in range(n//2//d+1))
        else:
            for d in divisors(n):
                s += totient(d)*sum(factorial(n//d)*d**i//2**i//factorial(i)//factorial(n//d-2*i) for i in range(n//d//2+1))
        return s//n

A047917 Triangular array read by rows: a(n,k) = phi(n/k)*(n/k)^k*k!/n if k|n else 0 (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 2, 2, 0, 6, 4, 0, 0, 0, 24, 2, 6, 8, 0, 0, 120, 6, 0, 0, 0, 0, 0, 720, 4, 8, 0, 48, 0, 0, 0, 5040, 6, 0, 36, 0, 0, 0, 0, 0, 40320, 4, 20, 0, 0, 384, 0, 0, 0, 0, 362880, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 4, 12, 64, 324, 0, 3840, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			1; 1,1; 2,0,2; 2,2,0,6; 4,0,0,0,24; 2,6,8,0,0,120; ...
		

References

  • J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

Crossrefs

Divide n-th row of A047916 by n.
Row sums give A061417.
Cf. A002024.

Programs

  • Haskell
    a047917 n k = a047917_tabl !! (n-1) !! (k-1)
    a047917_row n = a047917_tabl !! (n-1)
    a047917_tabl = zipWith (zipWith div) a047916_tabl a002024_tabl
    -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    a[n_, k_] := If[ Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!/n, 0]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]](* Jean-François Alcover, Feb 17 2012 *)

Extensions

Offset corrected by Reinhard Zumkeller, Mar 19 2014

A325956 Number of cyclic permutations of [n] with symmetry order s=1.

Original entry on oeis.org

1, 0, 0, 4, 20, 108, 714, 4992, 40284, 362480, 3628790, 39912648, 479001588, 6226974684, 87178287120, 1307673722880, 20922789887984, 355687417715904, 6402373705727982, 121645100223034480, 2432902008175589664, 51090942167993548700, 1124000727777607679978, 25852016738803204991232
Offset: 1

Views

Author

Michel Marcus, Sep 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(1/n) DivisorSum[n, MoebiusMu[#] EulerPhi[#] #^(n/#)*(n/#)! &], {n, 24}] (* Michael De Vlieger, May 07 2021 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d)*eulerphi(d)*d^(n/d)*(n/d)!)/n;

Formula

a(n) = (1/n)*Sum_{d|n} moebius(d)*phi(d)*d^(n/d)*(n/d)!.
a(n) = n*A064852(n). - Andrew Howroyd, May 07 2021

Extensions

a(1)=1 prepended by Andrew Howroyd, May 07 2021
Previous Showing 11-15 of 15 results.