cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A225076 Triangle read by rows: absolute values of odd-numbered rows of A225356.

Original entry on oeis.org

1, 1, 22, 1, 1, 236, 1446, 236, 1, 1, 2178, 58479, 201244, 58479, 2178, 1, 1, 19672, 1736668, 19971304, 49441990, 19971304, 1736668, 19672, 1, 1, 177134, 46525293, 1356555432, 9480267666, 19107752148, 9480267666, 1356555432, 46525293, 177134, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 26 2013

Keywords

Comments

An equivalent definition: take the polynomials corresponding to rows 2, 4, 6, 8, ... of A060187, divide by x+1, and extract the coefficients. [Corrected by Petros Hadjicostas, Apr 17 2020]

Examples

			Triangle T(n,m) (for n >= 1 and 0 <= m <= 2*n - 2) begins as follows:
  1;
  1,    22,       1;
  1,   236,    1446,      236,        1;
  1,  2178,   58479,   201244,    58479,     2178,       1;
  1, 19672, 1736668, 19971304, 49441990, 19971304, 1736668, 19672, 1;
  ...
		

Crossrefs

Cf. A002671 (row sums), A034870, A060187, A171692, A225398.

Programs

  • Mathematica
    (* Power series via an infinite sum *)
    p[x_,n_] = (x-1)^(2*n)*Sum[(2*k+1)^(2*n-1)*x^k,{k,0,Infinity}];
    Table[CoefficientList[p[x,n]/(1+x),x],{n,1,10}]//Flatten
    (* First alternative method: recurrence *)
    t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k - (m-1))*t[n-1,k,m]];
    T[n_, k_]:= T[n, k]= t[n+1,k+1,2]; (* t(n,k,2) = A060187 *)
    Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(x+1), x], {n,14,2}]]
    (* Second alternative method: polynomial expansion *)
    p[t_] = Exp[t]*x/(-Exp[2*t] + x);
    Flatten[Table[CoefficientList[(n!*(-1+x)^(n+1)/(x*(x+1)))*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 1, 13, 2}]]
  • Sage
    def A060187(n, k): return sum( (-1)^(k-j)*(2*j-1)^(n-1)*binomial(n, k-j) for j in (1..k) )
    def A225076(n,k): return sum( (-1)^(k-j-1)*A060187(2*n, j+1) for j in (0..k-1) )
    flatten([[A225076(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022

Formula

Triangle read by rows: row n gives coefficients in the expansion of the polynomial ((x - 1)^(2*n)/(x + 1)) * Sum_{k >= 0} (2*k + 1)^(2*n-1)*x^k. The infinite sum simplifies to a polynomial.
Sum_{m=0..2*n-2} T(n,m)*t^m = 2^(2*n-1) * (1-t)^(2*n) * LerchPhi(t, 1-2*n, 1/2)/(1 + t).
Sum_{k=1..n} T(n, k) = A002671(n-1).
T(n,m) = Sum_{k=0..m-1} (-1)^(m-k-1)*A060187(2*n,k+1) for n >= 1 and 1 <= m <= 2*n-1. - Petros Hadjicostas, Apr 17 2020

Extensions

Edited by N. J. A. Sloane, May 06 2013, May 11 2013

A274303 A bisection of A007346.

Original entry on oeis.org

8, 24, 7680, 64, 3715891200, 194641920, 1428329123020800, 160, 1678343852714360832000, 637770664031457116160000, 4714400748520531002654720000, 2602349213183333113465405440000, 27064431817106664380040216576000000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 20 2016

Keywords

Crossrefs

A274304 A bisection of A002866.

Original entry on oeis.org

1, 4, 192, 23040, 5160960, 1857945600, 980995276800, 714164561510400, 685597979049984000, 839171926357180416000, 1275541328062914232320000, 2357200374260265501327360000, 5204698426366666226930810880000, 13532215908553332190020108288000000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 20 2016

Keywords

Crossrefs

A323993 Numerators of central difference coefficients M_{5}^(2n+1).

Original entry on oeis.org

1, 5, 23, 227, 631
Offset: 2

Views

Author

N. J. A. Sloane, Feb 14 2019

Keywords

Comments

Salzer's table extends to M_{5}^(29).

Crossrefs

Cf. 1/A002671, A002673/A002672, A323994 (denominators).

A323994 Denominators of central difference coefficients M_{5}^(2n+1).

Original entry on oeis.org

1, 24, 1152, 193536, 13271040
Offset: 2

Views

Author

N. J. A. Sloane, Feb 14 2019

Keywords

Comments

Salzer's table extends to M_{5}^(29).

Crossrefs

Cf. 1/A002671, A002673/A002672, A323993 (numerators).
Previous Showing 11-15 of 15 results.