A244878 Number of 6 X 6 traceless symmetric magic squares with magic sum n.
1, 15, 130, 760, 3355, 12043, 36935, 100135, 245870, 556580, 1177295, 2351165, 4469610, 8141210, 14284170, 24247962, 39970575, 64178685, 100639000, 154470030, 232524589, 343854445, 500269705, 717006745, 1013519780, 1414412506, 1950527645, 2660213675, 3590789540, 4800229700
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
- Index entries for linear recurrences with constant coefficients, signature (9,-35,75,-90,42,42,-90,75,-35,9,-1).
Crossrefs
Row n=6 of A333351.
Programs
-
Mathematica
LinearRecurrence[{9,-35,75,-90,42,42,-90,75,-35,9,-1},{1,15,130,760,3355,12043,36935,100135,245870,556580,1177295},30] (* Harvey P. Dale, Jul 18 2024 *)
-
PARI
Vec((1 + 6*x + 30*x^2 + 40*x^3 + 30*x^4 + 6*x^5 + x^6) / ((1 - x)^10*(1 + x)) + O(x^30)) \\ Colin Barker, Jan 12 2017
Formula
G.f.: (1 + 6*x + 30*x^2 + 40*x^3 + 30*x^4 + 6*x^5 + x^6) / ((1 - x)^10*(1 + x)).
a(n) = (945*(507+5*(-1)^n) + 1480896*n + 2062800*n^2 + 1747040*n^3 + 989100*n^4 + 383628*n^5 + 100800*n^6 + 17160*n^7 + 1710*n^8 + 76*n^9) / 483840. - Colin Barker, Jan 12 2017
Comments