cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A244878 Number of 6 X 6 traceless symmetric magic squares with magic sum n.

Original entry on oeis.org

1, 15, 130, 760, 3355, 12043, 36935, 100135, 245870, 556580, 1177295, 2351165, 4469610, 8141210, 14284170, 24247962, 39970575, 64178685, 100639000, 154470030, 232524589, 343854445, 500269705, 717006745, 1013519780, 1414412506, 1950527645, 2660213675, 3590789540, 4800229700
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Row n=6 of A333351.

Programs

  • Mathematica
    LinearRecurrence[{9,-35,75,-90,42,42,-90,75,-35,9,-1},{1,15,130,760,3355,12043,36935,100135,245870,556580,1177295},30] (* Harvey P. Dale, Jul 18 2024 *)
  • PARI
    Vec((1 + 6*x + 30*x^2 + 40*x^3 + 30*x^4 + 6*x^5 + x^6) / ((1 - x)^10*(1 + x)) + O(x^30)) \\ Colin Barker, Jan 12 2017

Formula

G.f.: (1 + 6*x + 30*x^2 + 40*x^3 + 30*x^4 + 6*x^5 + x^6) / ((1 - x)^10*(1 + x)).
a(n) = (945*(507+5*(-1)^n) + 1480896*n + 2062800*n^2 + 1747040*n^3 + 989100*n^4 + 383628*n^5 + 100800*n^6 + 17160*n^7 + 1710*n^8 + 76*n^9) / 483840. - Colin Barker, Jan 12 2017

A125196 Number of magic labelings of the Petersen graph with magic sum n.

Original entry on oeis.org

1, 6, 27, 87, 228, 513, 1034, 1914, 3315, 5440, 8541, 12921, 18942, 27027, 37668, 51428, 68949, 90954, 118255, 151755, 192456, 241461, 299982, 369342, 450983, 546468, 657489, 785869, 933570, 1102695, 1295496
Offset: 0

Views

Author

R. J. Mathar, Jan 25 2007

Keywords

Programs

  • Maple
    a := proc(r) local r1 ; r1 := r^5/24+5*r^4/16+25*r^3/24+15*r^2/8+23*r/12 ; if r mod 2 = 0 then r1+1 ; else r1+13/16 ; fi ; end: for n from 0 to 30 do printf("%d ",a(n)) ; od;
  • Mathematica
    CoefficientList[Series[(x^4 + x^3 + 6x^2 + x + 1)/(1 - x)^6/(1 + x), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 12 2012 *)
    LinearRecurrence[{5,-9,5,5,-9,5,-1},{1,6,27,87,228,513,1034},40] (* Harvey P. Dale, Sep 10 2024 *)

Formula

a(n) = (1/32)*(29*C(n+5,5) + 21*C(n+4,5) + 126*C(n+3,5) - 34*C(n+2,5) + 21*C(n+1,5) - 3*C(n,5) + 3*(-1)^n). [Stanley]. - N. J. A. Sloane, Jul 07 2014
G.f.: (x^4+x^3+6x^2+x+1)/((1-x)^6*(1+x)) [Stanley; Ahmed].

Extensions

Stanley reference added by N. J. A. Sloane, Jul 07 2014

A125198 Number of magical labelings of the octahedral graph of magic sum n.

Original entry on oeis.org

1, 8, 40, 144, 417, 1032, 2272, 4568, 8545, 15072, 25320, 40824, 63553, 95984, 141184, 202896, 285633, 394776, 536680, 718784, 949729, 1239480, 1599456, 2042664, 2583841, 3239600, 4028584, 4971624, 6091905, 7415136, 8969728, 10786976, 12901249, 15350184
Offset: 0

Views

Author

R. J. Mathar, Jan 25 2007

Keywords

Programs

  • Maple
    a := proc(r) local r2 ; r2 := r^6/120+r^5/10+25*r^4/48+3*r^3/2+38*r^2/15+12*r/5 ; if r mod 2 = 0 then r2+1 ; else r2+15/16 ; fi ; end: for n from 0 to 40 do printf("%d ",a(n)) ; od;
  • Mathematica
    (1 + 2*x + 6*x^2 + 2*x^3 + x^4)/((1 - x)^7*(1 + x)) + O[x]^40 // CoefficientList[#, x]& (* Jean-François Alcover, Apr 01 2018 *)
  • PARI
    Vec((1+2*x+6*x^2+2*x^3+x^4)/((1-x)^7*(1+x)) + O(x^40)) \\ Colin Barker, Jan 13 2017

Formula

G.f.: (1+2*x+6*x^2+2*x^3+x^4)/((1-x)^7*(1+x)). [Stanley] - N. J. A. Sloane, Jul 07 2014
From Colin Barker, Jan 13 2017: (Start)
a(n) = (15*(31+(-1)^n) + 1152*n + 1216*n^2 + 720*n^3 + 250*n^4 + 48*n^5 + 4*n^6) / 480.
a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8) for n>7.
(End)

Extensions

Stanley reference added by N. J. A. Sloane, Jul 07 2014

A244495 Number of 3 X 3 matrices of nonnegative integer entries with all row and column sums <= n.

Original entry on oeis.org

1, 34, 451, 3380, 17531, 70466, 235014, 679722, 1757085, 4147792, 9084361, 18683314, 36421463, 67798940, 121239308, 209285436, 350158809, 569759574, 904194895, 1402934104, 2132700691, 3182223374, 4667981330, 6741092150, 9595505205, 13477677876, 18697927509, 25643668006, 34794756655
Offset: 0

Views

Author

N. J. A. Sloane, Jul 06 2014

Keywords

Examples

			a(1)=34:
0 1's: 1,
1 1: 9,
2 1's: 3*3*2 = 18,
3 1's: 6 (transversals),
total = 34.
		

References

  • Stanley, Richard P., Linear homogeneous Diophantine equations and magic labelings of graphs. Duke Math. J. 40 (1973), 607-632.
  • Stanley, Richard P., Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings. Duke Math. J. 43 (1976), no. 3, 511-531.

Programs

  • Magma
    [1+(25/6)*k+(3337/420)*k^2+(13777/1512)*k^3+(3289/480)*k^4+(9983/2880)*k^5+(281/240)*k^6+(73/288)*k^7+(107/3360)*k^8+(107/60480)*k^9 : k in [0..30]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    f:= k -> 1+(25/6)*k+(3337/420)*k^2+(13777/1512)*k^3+(3289/480)*k^4+(9983/2880)*k^5+(281/240)*k^6+(73/288)*k^7+(107/3360)*k^8+(107/60480)*k^9:
    seq(f(k),k=0..1000); # Robert Israel, Jul 06 2014
  • Mathematica
    CoefficientList[Series[(1 + 24*x + 156*x^2 + 280*x^3 + 156*x^4 + 24*x^5 + x^6)/(1 - x)^10, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 06 2014 *)

Formula

G.f.: (1+24*x+156*x^2+280*x^3+156*x^4+24*x^5+x^6)/(1-x)^10.
a(k) = 1+(25/6)*k+(3337/420)*k^2+(13777/1512)*k^3+(3289/480)*k^4+(9983/2880)*k^5+(281/240)*k^6+(73/288)*k^7+(107/3360)*k^8+(107/60480)*k^9. - Robert Israel, Jul 06 2014

A244498 Number of magic labelings of the nodes of the 4 X 4 grid graph with magic sum n.

Original entry on oeis.org

1, 36, 446, 3172, 15891, 62408, 204828, 585672, 1501269, 3521452, 7674810, 15723500, 30556903, 56739216, 101252408, 174482832, 291507177, 473741364, 751024438, 1164218484, 1768415099, 2636848984, 3865629780, 5579414360, 7938153405, 11145058236, 15455946546, 21190138876, 28743091407
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Comments

The graph has 16 nodes and 24 edges.
The node labels are nonnegative integers, and the sum along any of the 4 rows or 4 columns is n.

Programs

  • PARI
    Vec((1 + 26*x + 131*x^2 + 212*x^3 + 131*x^4 + 26*x^5 + x^6) / ((1 - x)^10) + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 26*x + 131*x^2 + 212*x^3 + 131*x^4 + 26*x^5 + x^6) / ((1 - x)^10).
From Colin Barker, Jan 11 2017: (Start)
a(n) = (7560 + 34164*n + 67044*n^2 + 75190*n^3 + 53382*n^4 + 25095*n^5 + 7896*n^6 + 1620*n^7 + 198*n^8 + 11*n^9) / 7560.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>9.
(End)

A244866 Let G denote the 7-node, 12-edge graph formed from a hexagon with main diagonals drawn and a node at the center; a(n) = number of magic labelings of G with magic sum 2n.

Original entry on oeis.org

1, 18, 114, 438, 1263, 3024, 6356, 12132, 21501, 35926, 57222, 87594, 129675, 186564, 261864, 359720, 484857, 642618, 839002, 1080702, 1375143, 1730520, 2155836, 2660940, 3256565, 3954366, 4766958, 5707954, 6792003, 8034828, 9453264, 11065296, 12890097, 14948066, 17260866, 19851462, 22744159
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Programs

  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,18,114,438,1263,3024},40] (* Harvey P. Dale, Nov 09 2022 *)
  • PARI
    Vec((1 + 12*x + 21*x^2 + 4*x^3) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 12*x + 21*x^2 + 4*x^3) / (1 - x)^6.
From Colin Barker, Jan 11 2017: (Start)
a(n) = (n + 1)*(n + 2)*(19*n^3 + 63*n^2 + 68*n + 30) / 60.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)

A244867 Let G denote the 9-node, 16-edge graph formed from an octagon with main diagonals drawn and a node at the center; a(n) = number of magic labelings of G with magic sum 2n.

Original entry on oeis.org

1, 32, 320, 1784, 7040, 22104, 58980, 139320, 299343, 596200, 1115972, 1983488, 3374150, 5527952, 8765880, 13508880, 20299581, 29826960, 42954136, 60749480, 84521228, 115855784, 156659900, 209206920, 276187275, 360763416, 466629372, 598075120, 760055954, 958267040, 1199223344, 1490345120
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Programs

  • Mathematica
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,32,320,1784,7040,22104,58980,139320},40] (* Harvey P. Dale, Aug 17 2019 *)
  • PARI
    Vec((1 + 24*x + 92*x^2 + 64*x^3 + 6*x^4) / (1 - x)^8 + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 24*x + 92*x^2 + 64*x^3 + 6*x^4) / (1 - x)^8.
From Colin Barker, Jan 11 2017: (Start)
a(n) = (5040 + 22164*n + 43092*n^2 + 46963*n^3 + 30240*n^4 + 11326*n^5 + 2268*n^6 + 187*n^7) / 5040.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>7.
(End)

A244877 Number of 4 X 4 traceless matrices of nonnegative integers with all row and column sums <= n.

Original entry on oeis.org

1, 108, 3396, 49852, 447777, 2862384, 14265040, 58788720, 208577633, 655618172, 1864806372, 4877412332, 11877770177, 27199536768, 59037366080, 122252641280, 242826555969, 464730264172, 860261412132, 1545252073596, 2700999547873, 4605325025136, 7675844020560, 12529356938800
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Programs

  • PARI
    Vec((1 + 95*x + 2070*x^2 + 13842*x^3 + 34416*x^4 + x^9 + 95*x^8 + 2070*x^7 + 13842*x^6 + 34416*x^5) / (1-x)^13 + O(x^30)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 95*x + 2070*x^2 + 13842*x^3 + 34416*x^4 + x^9 + 95*x^8 + 2070*x^7 + 13842*x^6 + 34416*x^5) / (1-x)^13.
a(n) = ((2+n)^2*(226800 + 1014480*n + 2137860*n^2 + 2775656*n^3 + 2422453*n^4 + 1468908*n^5 + 621705*n^6 + 180336*n^7 + 34191*n^8 + 3820*n^9 + 191*n^10)) / 907200. - Colin Barker, Jan 11 2017

A244882 Expansion of (1 + 2*x + 2*x^2) / (1 - x)^6.

Original entry on oeis.org

1, 8, 35, 110, 280, 616, 1218, 2220, 3795, 6160, 9581, 14378, 20930, 29680, 41140, 55896, 74613, 98040, 127015, 162470, 205436, 257048, 318550, 391300, 476775, 576576, 692433, 826210, 979910, 1155680, 1355816, 1582768, 1839145, 2127720, 2451435, 2813406
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(1+2x+2x^2)/(1-x)^6,{x,0,40}],x] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,8,35,110,280,616},40] (* Harvey P. Dale, Dec 26 2016 *)
  • PARI
    Vec((1 + 2*x + 2*x^2) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Jan 12 2017

Formula

G.f.: (1 + 2*x + 2*x^2) / (1 - x)^6.
From Colin Barker, Jan 12 2017: (Start)
a(n) = (24 + 62*n + 63*n^2 + 33*n^3 + 9*n^4 + n^5) / 24.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)

A244883 Expansion of (1+6*x+16*x^2+8*x^3+x^4)/(1-x)^8.

Original entry on oeis.org

1, 14, 100, 472, 1691, 4988, 12744, 29160, 61149, 119482, 220220, 386464, 650455, 1056056, 1661648, 2543472, 3799449, 5553510, 7960468, 11211464, 15540019, 21228724, 28616600, 38107160, 50177205, 65386386, 84387564, 107938000, 136911407, 172310896, 215282848
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Programs

  • Magma
    [((n+1)*(n+2)*(n+3)*(n*(n+4)*(n*(16*n+57)+137)+420))/2520: n in [0..40]]; // Vincenzo Librandi, Nov 16 2014
  • Mathematica
    a[n_Integer/;n>=0]:=((n+1) (n+2) (n+3) (n (n+4) (n (16 n+57)+137)+420))/2520 (* Todd Silvestri, Nov 16 2014 *)
    CoefficientList[Series[(1 + 6 x + 16 x^2 + 8 x^3 + x^4) / (1 - x)^8, {x, 0, 100}], x] (* Vincenzo Librandi, Nov 16 2014 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,14,100,472,1691,4988,12744,29160},40] (* Harvey P. Dale, May 11 2020 *)

Formula

a(n) = ((n+1)*(n+2)*(n+3)*(n*(n+4)*(n*(16*n+57)+137)+420))/2520. - Todd Silvestri, Nov 16 2014
Previous Showing 31-40 of 40 results.