A041005
Convolution of Catalan numbers A000108(n+1), n >= 0, with A020918.
Original entry on oeis.org
1, 16, 159, 1260, 8722, 55152, 326811, 1844084, 10015566, 52754624, 270976342, 1362986520, 6734927460, 32775704608, 157408497171, 747269225028, 3511471892470, 16351481223840, 75525932249922, 346305571781224
Offset: 0
A118445
Number of tree-rooted maps of genus 1 with n edges: rooted maps on the torus with a distinguished spanning tree.
Original entry on oeis.org
1, 25, 490, 8820, 152460, 2576574, 42942900, 709171320, 11636856660, 190068658780, 3093732938296, 50222937310000, 813611584422000, 13158602740363500, 212528020730913000, 3428785401125396400, 55266606794455402500, 890117467077758188500
Offset: 2
- E. A. Bender, E. R. Canfield and R. W. Robinson, The asymptotic number of tree-rooted maps on a surface, J. Comb. Theory, Ser. A, 48, No. 2 (1988), 156-164.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. II, J. Comb. Theory, Ser. B, 13, No. 2 (1972), 122-141 (pp. 137, 140).
-
HypergeometricPFQ[{5/2, 5/2}, {4}, 16x] + O[x]^18 // CoefficientList[#, x]& (* Jean-François Alcover, Aug 28 2019 *)
Table[n*(n-1) * Binomial[2*n,n]^2 / (24*(n+1)), {n, 2, 20}] (* Vaclav Kotesovec, Feb 17 2024 *)
A370237
Number of genus 3 partitions of the n-set.
Original entry on oeis.org
1, 94, 2620, 45430, 600655, 6633484, 64336844, 565256120
Offset: 8
A382274
Expansion of 1/(1 - 4*x/(1-x)^2)^(5/2).
Original entry on oeis.org
1, 10, 90, 730, 5570, 40762, 289370, 2007210, 13671170, 91750250, 608294490, 3991833210, 25968131010, 167664187290, 1075453670490, 6858654320970, 43517809896450, 274862176368330, 1728960219827290, 10835520927931930, 67679638209628098, 421442759107879930
Offset: 0
-
a(n) = sum(k=0, n, (-4)^k*binomial(-5/2, k)*binomial(n+k-1, n-k));
A090299
Table T(n,k), n>=0 and k>=0, read by antidiagonals : the k-th column given by the k-th polynomial K_k related to A090285.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 10, 5, 1, 14, 35, 22, 7, 1, 42, 126, 93, 38, 9, 1, 132, 462, 386, 187, 58, 11, 1, 429, 1716, 1586, 874, 325, 82, 13, 1, 1430, 6435, 6476, 3958, 1686, 515, 110, 15, 1, 4862, 24310, 26333, 17548, 8330, 2934, 765, 142, 17, 1
Offset: 0
row n=0 : 1, 1, 2, 5, 14, 42, 132, 429, ... see A000108.
row n=1 : 1, 3, 10, 35, 126, 462, 1716, 6435, ... see A001700.
row n=2 : 1, 5, 22, 93, 386, 1586, 6476, ... see A000346.
row n=3 : 1, 7, 38, 187, 874, 3958, 17548, ... see A000531.
row n=4 : 1, 9, 58, 325, 1686, 8330, 39796, ... see A018218.
Other rows :
A029887,
A042941,
A045724,
A042985,
A045492. Columns :
A000012,
A005408. Row n is the convolution of the row (n-j) with
A000984,
A000302,
A002457,
A002697 (first term omitted),
A002802,
A038845,
A020918,
A038846,
A020920 for j=1, 2, ..9 respectively.
Corrected by Alford Arnold, Oct 18 2006
A353596
Triangle read by rows, T(n, k) = [x^k] (-2)^n*GegenbauerC(n, -1/2, x).
Original entry on oeis.org
1, 0, 2, 2, 0, -2, 0, -4, 0, 4, -2, 0, 12, 0, -10, 0, 12, 0, -40, 0, 28, 4, 0, -60, 0, 140, 0, -84, 0, -40, 0, 280, 0, -504, 0, 264, -10, 0, 280, 0, -1260, 0, 1848, 0, -858, 0, 140, 0, -1680, 0, 5544, 0, -6864, 0, 2860, 28, 0, -1260, 0, 9240, 0, -24024, 0, 25740, 0, -9724
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 2;
[2] 2, 0, -2;
[3] 0, -4, 0, 4;
[4] -2, 0, 12, 0, -10;
[5] 0, 12, 0, -40, 0, 28;
[6] 4, 0, -60, 0, 140, 0, -84;
[7] 0, -40, 0, 280, 0, -504, 0, 264;
[8] -10, 0, 280, 0, -1260, 0, 1848, 0, -858;
[9] 0, 140, 0, -1680, 0, 5544, 0, -6864, 0, 2860;
.
Unsigned antidiagonals |T(n+k, n-k)|:
[0] 1;
[1] 2, 2;
[2] 2, 4, 2;
[3] 4, 12, 12, 4;
[4] 10, 40, 60, 40, 10;
[5] 28, 140, 280, 280, 140, 28;
[6] 84, 504, 1260, 1680, 1260, 504, 84;
-
g := n -> (-2)^n*GegenbauerC(n, -1/2, x):
seq(print(seq(coeff(simplify(g(n)), x, k), k = 0..n)), n = 0..9);
-
s={}; For[n=0,n<11,n++,For[k=0,kDetlef Meya, Oct 03 2023 *)
Comments