A129486
Odd unitary abundant numbers that are not odd, squarefree, ordinary abundant numbers.
Original entry on oeis.org
195195, 333795, 416955, 1786785, 1996995, 2417415, 2807805, 3138135, 3318315, 3708705, 3798795, 4103715, 4339335, 4489485, 4789785, 4967655, 5120115, 5420415, 5552085, 5660655, 5731635, 6051045, 6111105, 6263565, 6342105, 6695535, 6771765, 6938295, 7000455, 7088235
Offset: 1
The third integer which is an odd unitary abundant number but is not an ordinary, squarefree abundant number is 416955. Hence a(3)=416955.
-
UnitaryDivisors[ n_Integer?Positive ] := Select[ Divisors[ n ], GCD[ #, n/# ] == 1 & ]; sstar[ n_ ] := Plus @@ UnitaryDivisors[ n ] - n; UnitaryAbundantNumberQ[ k_ ] := If[ sstar[ k ] > k, True, False ]; data1 = Select[ Range[ 1, 10^7, 2 ], UnitaryAbundantNumberQ[ # ] & ]; data2 = Select[ Range[ 1, 10^7, 2 ], DivisorSigma[ 1, # ] - 2 # > 0 && ! MoebiusMu[ # ] == 0 & ]; Complement[ data1, data2 ]
uaQ[n_] := Module[{f = FactorInteger[n]}, Max[f[[;;,2]]] > 1 && Times@@(1 + Power @@@ f) > 2n]; Select[Range[3, 2*10^6, 2], uaQ] (* Amiram Eldar, May 13 2019 *)
A258142
Consider the unitary aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
Original entry on oeis.org
6, 21, 60, 85, 90, 261, 976, 2009, 87360, 97273, 4948133, 68353213
Offset: 1
Divisors of 85 are 1, 5, 17, 85. Unitary aliquot parts are 1, 5, 17.
We have:
1 + 5 + 17 = 23;
5 + 17 + 23 = 45;
17 + 23 + 45 = 85.
Divisors of 2009 are 1, 7, 41, 49, 287, 2009.
Unitary aliquot parts are 1, 41, 49. We have:
1 + 41 + 49 = 91;
41 + 49 + 91 = 181;
49 + 91 + 181 = 321;
91 + 181 + 321 = 593;
181 + 321 + 593 = 1095;
321 + 593 + 1095 = 2009.
-
with(numtheory):P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h);
for n from 1 to q do if not isprime(n) then b:=sort([op(divisors(n))]); a:=[];
for k from 1 to nops(b)-1 do if gcd(b[k],n/b[k])=1 then a:=[op(a),b[k]]; fi; od;
a:=sort(a); b:=nops(a); if b>1 then for k from 1 to b do v[k]:=a[k]; od;
t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
-
aQ[n_] := Module[{s = Most[Select[Divisors[n], GCD[#, n/#] == 1 &]]}, If[Length[s] == 1, False, While[Total[s] < n, AppendTo[s, Total[s]]; s = Rest[s]]; Total[s] == n]]; Select[Range[2, 10^8], aQ] (* Amiram Eldar, Jan 12 2019 *)
A319937
Unitary sociable numbers of order 10.
Original entry on oeis.org
525150234, 527787366, 528544218, 553128198, 612951066, 675192294, 735821562, 982674438, 998151162, 998151174, 5251502340, 5277873660, 5285442180, 5531281980, 6129510660, 6751922940, 7358215620, 9826744380, 9981511620, 9981511740
Offset: 1
Cf.
A063919 (sum of proper unitary divisors).
-
f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
isok10(n) = iferr(f(f(f(f(f(f(f(f(f(f(n)))))))))) == n, E, 0);
isok5(n) = iferr(f(f(f(f(f(n))))) == n, E, 0);
isok2(n) = iferr(f(f(n)) == n, E, 0);
isok1(n) = iferr(f(n) == n, E, 0);
isok(n) = isok10(n) && !isok1(n) && !isok2(n) && !isok5(n);
A333927
Recursive perfect numbers: numbers k such that A333926(k) = 2*k.
Original entry on oeis.org
6, 28, 264, 1104, 3360, 75840, 151062912, 606557952, 2171581440
Offset: 1
264 is a term since the sum of its recursive divisors is 1 + 2 + 3 + 6 + 8 + 11 + 22 + 24 + 33 + 66 + 88 + 264 = 528 = 2 * 264.
-
recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], recDivSum[#] == 2*# &]
A335268
Numbers that are not powers of primes (A024619) whose harmonic mean of their unitary divisors that are larger than 1 is an integer.
Original entry on oeis.org
6, 15, 20, 24, 28, 30, 45, 60, 72, 90, 91, 96, 100, 112, 153, 216, 220, 240, 264, 272, 325, 352, 360, 364, 378, 496, 703, 765, 780, 816, 832, 1056, 1125, 1170, 1225, 1360, 1431, 1512, 1656, 1760, 1891, 1900, 1984, 2275, 2448, 2520, 2701, 2912, 3024, 3168, 3321
Offset: 1
6 is a term since its unitary divisors other than 1 are 2, 3 and 6, and their harmonic mean, 3/(1/2 + 1/3 + 1/6) = 3, is an integer.
A098188
Irregular triangle with 4 columns which contains in each row the members of a 4-cycle under the map x->A063919(x), iteration of summing the proper-unitary divisors.
Original entry on oeis.org
263820, 263940, 280380, 280500, 395730, 395910, 420570, 420750, 172459210, 218725430, 272130250, 218628662, 209524210, 246667790, 231439570, 230143790, 384121920, 384296640, 408233280, 408408000
Offset: 1
The first line represents the 4-cycle 280500->263820->263940->280380->280500->...,
The second line represents the 4-cycle 420750->395730->395910->420570->420750->..
Cf.
A319902 (where the terms are entered by increasing value).
A335141
Numbers that are both unitary pseudoperfect (A293188) and nonunitary pseudoperfect (A327945).
Original entry on oeis.org
840, 2940, 7260, 9240, 10140, 10920, 13860, 14280, 15960, 16380, 17160, 18480, 19320, 20580, 21420, 21840, 22440, 23100, 23940, 24024, 24360, 25080, 26040, 26520, 27300, 28560, 29640, 30360, 30870, 31080, 31920, 32340, 34440, 34650, 35700, 35880, 36120, 36960
Offset: 1
840 is a term since its aliquot unitary divisors are {1, 3, 5, 7, 8, 15, 21, 24, 35, 40, 56, 105, 120, 168, 280} and 1 + 5 + 7 + 8 + 15 + 35 + 40 + 56 + 105 + 120 + 168 + 280 = 840, and its nonunitary divisors are {2, 4, 6, 10, 12, 14, 20, 28, 30, 42, 60, 70, 84, 140, 210, 420} and 70 + 140 + 210 + 420 = 840.
-
pspQ[n_] := Module[{d = Divisors[n], ud, nd, x}, ud = Select[d, CoprimeQ[#, n/#] &]; nd = Complement[d, ud]; ud = Most[ud]; Plus @@ ud >= n && Plus @@ nd >= n && SeriesCoefficient[Series[Product[1 + x^ud[[i]], {i, Length[ud]}], {x, 0, n}], n] > 0 && SeriesCoefficient[Series[Product[1 + x^nd[[i]], {i, Length[nd]}], {x, 0, n}], n] > 0]; Select[Range[10^4], pspQ]
A063829
usigma(n) = 2n + d(n), where d(n) is the number of divisors of n.
Original entry on oeis.org
150, 294, 726, 1014, 1428, 1734, 2166, 3174, 5046, 5766, 8214, 10086, 11094, 13254, 16854, 20886, 22326, 26934, 30246, 31974, 37446, 41334, 47526, 56454, 61206, 63654, 68694, 71286, 76614, 96774, 102966, 112614, 115926, 133206, 136806, 147894, 159414
Offset: 1
-
usigma[n_] := Sum[d*Boole[GCD[d, n/d] == 1], {d, Divisors[n]}]; Reap[For[n = 1, n < 140000, n++, If[usigma[n] == 2 n + DivisorSigma[0, n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 16 2013 *)
-
us(n)=sumdiv(n,d, if(gcd(d,n/d)==1,d));
for(n=1,10^8, if(us(n)==2*n+numdiv(n),print1(n, ", ")))
A098187
Initial seeds x which will enter a cycle of length 4 under the iteration of x -> A063919(x), the sum of proper unitary divisors.
Original entry on oeis.org
81570, 114270, 137046, 169998, 177906, 182082, 182094, 185190, 194574, 194586, 201642, 203442, 204420, 204540, 212466, 212874, 213870, 219306, 219318, 230874, 231438, 231834, 231846, 232626, 237678, 238134, 242634, 258882, 259338, 259350
Offset: 1
81570 is in the sequence because its track under the iterated map is 81570, 114270, 182082, 182094, 232626, 237678, 305682, 352878, 360978, 403662, 420738, [420750, 395730, 395910, 420570], 420750.., where the cycle is indicated by brackets. The 4 recurrent terms appear after 11 transients for this case.
A334406
Unitary pseudoperfect numbers k such that there is a subset of unitary divisors of k whose sum is 2*k and for each d in this subset k/d is also in it.
Original entry on oeis.org
6, 60, 90, 210, 330, 546, 660, 714, 1770, 2310, 2730, 3198, 3486, 3570, 3990, 4290, 4620, 4830, 5460, 5610, 6006, 6090, 6270, 6510, 6630, 6930, 7140, 7410, 7590, 7770, 7854, 7980, 8190, 8580, 8610, 8778, 8970, 9030, 9240, 9570, 9660, 9690, 9870, 10374, 10626, 10710
Offset: 1
210 is a term since {1, 2, 3, 14, 15, 70, 105, 210} is a subset of its unitary divisors whose sum is 420 = 2 * 210, and for each divisor d in this subset 210/d is also in it: 1 * 210 = 2 * 105 = 3 * 70 = 14 * 15 = 210.
-
seqQ[n_] := Module[{d = Select[Divisors[n], CoprimeQ[#, n/#] &]}, nd = Length[d]; divpairs = d[[1 ;; nd/2]] + d[[-1 ;; nd/2 + 1 ;; -1]]; SeriesCoefficient[Series[Product[1 + x^divpairs[[i]], {i, Length[divpairs]}], {x, 0, 2*n}], 2*n] > 0]; Select[Range[2, 1000], seqQ]
Comments