A118984 Triangular T(n,k) which contains in column k >= 0 the elements of the Stirling transform of the unsigned sequence Stirling1(j+k,j), j >= 0.
1, 2, 1, 5, 6, 2, 15, 31, 23, 6, 52, 160, 195, 110, 24, 203, 856, 1505, 1365, 634, 120, 877, 4802, 11312, 14560, 10738, 4284, 720, 4140, 28337, 85225, 145096, 150325, 94444, 33228, 5040, 21147, 175896, 652703, 1404186, 1908249, 1672524, 921212, 291024
Offset: 1
Examples
The array begins 1; 2, 1; 5, 6, 2; 15, 31, 23, 6; 52, 160, 195, 110, 24; 203, 856, 1505, 1365, 634, 120; 877, 4802, 11312, 14560, 10738, 4284, 720; 4140, 28337, 85225, 145096, 150325, 94444, 33228, 5040;
Links
- Sela Fried, The expected degree of noninvertibility of compositions of functions and a related combinatorial identity, arXiv:2202.13061 [math.CO], 2022. See Corollary 2.6 for a combinatorial identity of a signed version of this sequence.
Crossrefs
Programs
-
Maple
read("transforms"): A118984 := proc(n,k) [seq(0,j=0..k-2), seq( (-1)^k*combinat[stirling1](j+k,j),j=0..n)] ; STIRLING(%) ; op(n,%) ; end proc: # R. J. Mathar, May 19 2016
Extensions
Edited by R. J. Mathar, May 19 2016
Comments