cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A118984 Triangular T(n,k) which contains in column k >= 0 the elements of the Stirling transform of the unsigned sequence Stirling1(j+k,j), j >= 0.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 15, 31, 23, 6, 52, 160, 195, 110, 24, 203, 856, 1505, 1365, 634, 120, 877, 4802, 11312, 14560, 10738, 4284, 720, 4140, 28337, 85225, 145096, 150325, 94444, 33228, 5040, 21147, 175896, 652703, 1404186, 1908249, 1672524, 921212, 291024
Offset: 1

Views

Author

Alford Arnold, May 07 2006

Keywords

Comments

The initial array of unsigned Stirling numbers of the first kind (filled with an appropriate number of zeros) starts (see A094638)
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, 0, ...
1, 3, 2, 0, 0, 0, 0, 0, ...
1, 6, 11, 6, 0, 0, 0, 0, ...
1, 10, 35, 50, 24, 0, 0, 0, ...
1, 15, 85, 225, 274, 120, 0, 0, ...
1, 21, 175, 735, 1624, 1764, 720, 0, ...
1, 28, 322, 1960, 6769, 13132, 13068, 5040, ...
The Stirling transform is then applied on each individual column. - R. J. Mathar, May 19 2016.

Examples

			The array begins
     1;
     2,     1;
     5,     6,     2;
    15,    31,    23,      6;
    52,   160,   195,    110,     24;
   203,   856,  1505,   1365,    634,   120;
   877,  4802, 11312,  14560,  10738,  4284,   720;
  4140, 28337, 85225, 145096, 150325, 94444, 33228, 5040;
		

Crossrefs

Cf. A000110 (first column), A000142 (diagonal), A000670 (row sums), A003128 (2nd column), A008275, A008277.

Programs

  • Maple
    read("transforms"):
    A118984 := proc(n,k)
        [seq(0,j=0..k-2), seq( (-1)^k*combinat[stirling1](j+k,j),j=0..n)] ;
        STIRLING(%) ;
        op(n,%) ;
    end proc: # R. J. Mathar, May 19 2016

Extensions

Edited by R. J. Mathar, May 19 2016

A383262 Expansion of e.g.f. f(x)^2 * exp(f(x)) / 2, where f(x) = (exp(3*x) - 1)/3.

Original entry on oeis.org

0, 0, 1, 12, 123, 1270, 13776, 158718, 1944685, 25294338, 348340491, 5064749074, 77528735868, 1246096312188, 20976610875949, 368984700979440, 6767792258171547, 129182459141936566, 2561529454871582772, 52676675861728386114, 1121762199908797394977
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=2, n, 3^(n-k)*binomial(k, 2)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=2..n} 3^(n-k) * binomial(k,2) * Stirling2(n,k).

A174436 Partial sums of A039765.

Original entry on oeis.org

0, 0, 4, 35, 275, 2206, 18602, 166191, 1574415, 15788974, 167183914, 1863967135, 21822793215, 267611755414, 3429246890754, 45819357151439, 637076509210383, 9200974953803310, 137799616003035306
Offset: 0

Views

Author

Jonathan Vos Post, Mar 19 2010

Keywords

Comments

Partial sums of number of edges in the Hasse diagrams for the D-analogs of the partition lattices. The subsequence of primes in this partial sum begins: 45819357151439.

Crossrefs

Formula

a(n) = SUM[i=0..n] A039765(i).

A372624 Expansion of e.g.f. exp(1 - exp(x)) * (exp(x) - 1)^2 / 2.

Original entry on oeis.org

0, 0, 1, 0, -5, -10, 16, 154, 365, -750, -9749, -35222, 20956, 1013220, 6007821, 10272092, -129948837, -1405396426, -6318145964, 7407235766, 371429230721, 3172609248526, 11070816858267, -73488239926510, -1500342260080360, -11917913896465720, -31231507292803479
Offset: 0

Views

Author

Ilya Gutkovskiy, May 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[Exp[1 - Exp[x]] (Exp[x] - 1)^2/2, {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^k StirlingS2[n, k] Binomial[k, 2], {k, 0, n}], {n, 0, 26}]

Formula

a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n,k) * binomial(k,2).
a(n) = Sum_{k=0..n} binomial(n,k) * Stirling2(k,2) * A000587(n-k).
Previous Showing 11-14 of 14 results.