cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A353250 a(0) = 1, a(n) = harmonic_mean(a(n-1), n), where harmonic_mean(p, q) = 2/(1/p + 1/q); numerators.

Original entry on oeis.org

1, 1, 4, 24, 48, 480, 960, 13440, 26880, 161280, 322560, 7096320, 14192640, 369008640, 738017280, 295206912, 590413824, 20074070016, 40148140032, 1525629321216, 15256293212160, 30512586424320, 61025172848640, 2807157951037440, 5614315902074880
Offset: 0

Views

Author

Vladimir Reshetnikov, Apr 08 2022

Keywords

Examples

			a(0) = 1,
a(1) = 2/(1/1 + 1/1) = 1,
a(2) = 2/(1/1 + 1/2) = 4/3,
a(3) = 2/(1/(4/3) + 1/3) = 24/13,
a(4) = 2/(1/(24/13) + 1/4) = 48/19, etc.
This sequence gives the numerators: 1, 1, 4, 24, 48, ...
		

Crossrefs

Cf. A353251 (denominators).
Cf. A003149, A136128, A191778 (has many terms in common), A241519, A242376.

Programs

  • Mathematica
    Table[1/(1/2^n - Re[LerchPhi[2, 1, n + 1]]), {n, 0, 24}] // Numerator (* or *)
    a[0] = 1; a[n_Integer] := a[n] = 2/(1/a[n-1] + 1/n); Table[a[n], {n, 0, 24}] // Numerator

Formula

a(n) = numerator(1/(1/2^n - Re(Phi(2, 1, n+1)))), where Phi(z, s, a) is the Lerch transcendent.

A353251 a(0) = 1, a(n) = harmonic_mean(a(n-1), n), where harmonic_mean(p, q) = 2/(1/p + 1/q); denominators.

Original entry on oeis.org

1, 1, 3, 13, 19, 143, 223, 2521, 4201, 21563, 37691, 737161, 1328521, 31463413, 57821173, 21404465, 39854897, 1267947073, 2383173185, 85428430547, 808549483039, 1535039635999, 2921975382559, 128230606647497, 245195521274057, 2348840786785261, 4508193056814061
Offset: 0

Views

Author

Vladimir Reshetnikov, Apr 08 2022

Keywords

Examples

			a(0) = 1,
a(1) = 2/(1/1 + 1/1) = 1,
a(2) = 2/(1/1 + 1/2) = 4/3,
a(3) = 2/(1/(4/3) + 1/3) = 24/13,
a(4) = 2/(1/(24/13) + 1/4) = 48/19, etc.
This sequence gives the denominators: 1, 1, 3, 13, 19, ...
		

Crossrefs

Cf. A353250 (numerators).

Programs

  • Mathematica
    Table[1/(1/2^n - Re[LerchPhi[2, 1, n + 1]]), {n, 0, 26}] // Denominator (* or *)
    a[0] = 1; a[n_Integer] := a[n] = 2/(1/a[n-1] + 1/n); Table[a[n], {n, 0, 26}] // Denominator

Formula

a(n) = denominator(1/(1/2^n - Re(Phi(2, 1, n+1)))), where Phi(z, s, a) is the Lerch transcendent.

A358791 a(n) = n!*Sum_{m=0..floor(n/2)} binomial(n,2*m)^(-1).

Original entry on oeis.org

1, 1, 4, 8, 52, 156, 1536, 6144, 84096, 420480, 7453440, 44720640, 974972160, 6824805120, 176504832000, 1412038656000, 42224136192000, 380017225728000, 12893605517721600, 128936055177216000, 4892595136708608000
Offset: 0

Views

Author

Vladimir Kruchinin, Dec 01 2022

Keywords

Crossrefs

Cf. A003149.

Programs

  • Maxima
    a(n):=n!*sum(1/binomial(n,2*m),m,0,floor(n/2));
    
  • PARI
    a(n) = n!*sum(m=0, n\2, 1/binomial(n, 2*m)); \\ Michel Marcus, Dec 01 2022

Formula

E.g.f.: (1/2)*( log(1+x)/x^2-log(1-x)*(x^2+4*x-4)/(x^4-4*x^3+4*x^2)+6/(x^3-2*x^2-x+2) ).
P-recursive: 2*n*(n + 2)*(n - 2)*(3*n - 2)*a(n) = n*(n + 1)*(n + 2)*(n - 2)*(3*n - 2)*a(n-1) + 2*n^3*(n - 1)*(n - 2)*(3*n + 4)*a(n-2) - n^3*(n - 1)^2*(n - 2)*(3*n + 4)*a(n-3) with a(0) = a(1) = 1 and a(2) = 4. - Peter Bala, Apr 13 2023

A366565 Decimal expansion of the smaller real solution to x*2^(1/x) = e.

Original entry on oeis.org

3, 2, 7, 5, 6, 2, 4, 1, 3, 9, 7, 7, 5, 1, 6, 9, 4, 0, 0, 9, 2, 8, 2, 0, 8, 1, 2, 5, 9, 9, 1, 2, 2, 0, 4, 4, 3, 3, 9, 6, 4, 4, 6, 9, 6, 6, 5, 4, 2, 2, 7, 4, 2, 0, 4, 2, 9, 6, 9, 6, 9, 5, 4, 9, 6, 3, 4, 7, 6, 6, 3, 1, 4, 2, 2, 3, 3, 8, 7, 4, 9, 7, 5, 4, 6, 7, 9, 4, 2
Offset: 0

Views

Author

Hugo Pfoertner, Oct 23 2023

Keywords

Comments

This is the constant alpha occurring in the asymptotic analysis of random walks on the hypercube (Lemma 3, page 7, attributed to Bjorn Poonen), in Diaconis, Graham, and Morrison (1988). See link for more information.

Examples

			0.32756241397751694009282081259912204433964469665422742...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-Log[2]/ProductLog[-1, -Log[2]/E], 10, 120][[1]] (* Vaclav Kotesovec, Nov 03 2023 *)
  • PARI
    solve (x = 0.3, 0.35, x*2^(1/x)-exp(1))

Formula

Equals -log(2)/LambertW(-1, -log(2)/exp(1)). - Vaclav Kotesovec, Nov 03 2023

A299121 a(n) = Sum_{k=0..n} (k*(n-k))!.

Original entry on oeis.org

1, 2, 3, 6, 38, 1490, 443762, 965262242, 23539096637282, 4878608938121399042, 16752209028723653862101762, 531115497554502361264846265433602, 392660148984369152453298787770243889113602, 2811644066816242246665284589590844386691155533363202
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k*(n-k))!, {k, 0, n}], {n, 0, 14}]

Formula

a(n) ~ sqrt(Pi) * n^(n^2/2 + 1) / (2^(n^2/2 + 1/2) * exp(n^2/4)) if n is even, and a(n) ~ sqrt(Pi) * n^(n^2/2 + 1/2) / (2^(n^2/2 - 1) * exp(n^2/4)) if n is odd.

A368209 a(n) = Sum_{k=0..n} BarnesG(k)*BarnesG(n-k).

Original entry on oeis.org

0, 0, 1, 2, 3, 6, 29, 604, 69724, 49836144, 250872492816, 10113420362487552, 3669877057922582621184, 13317216838086531218401935360, 531580547910000731718546175028428800, 254627927130379381409123944181515703549952000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[BarnesG[k]*BarnesG[n-k], {k, 0, n}], {n, 0, 15}]

Formula

a(n) ~ 2^(n/2) * Pi^(n/2 - 1) * n^(n^2/2 - 2*n + 23/12) / (A * exp(3*n^2/4 - 2*n - 1/12)), where A = A074962 is the Glaisher-Kinkelin constant.
Previous Showing 31-36 of 36 results.