cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A020658 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 99
Offset: 1

Views

Author

Keywords

Comments

This is different from A047304: note the gap between 41 and 50. - M. F. Hasler, Oct 07 2014

Crossrefs

Cf. A047304.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Maple
    Noap:= proc(N,m)
    # N terms of earliest increasing seq with no m-term arithmetic progression
    local A,forbid,n,c,ds,j;
    A:= Vector(N):
    A[1..m-1]:= <($1..m-1)>:
    forbid:= {m}:
    for n from m to N do
      c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
      A[n]:= c;
      ds:= convert(map(t -> c-t, A[m-2..n-1]),set);
      for j from m-2 to 2 by -1 do
        ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set);
        if ds = {} then break fi;
      od;
      forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
    od:
    convert(A,list)
    end proc:
    Noap(100, 7); # Robert Israel, Jan 04 2016
  • Mathematica
    Select[Range[0, 100], FreeQ[IntegerDigits[#, 7], 6]&] + 1 (* Jean-François Alcover, Aug 18 2023, after M. F. Hasler *)

Formula

a(n) = A020657(n)+1. - M. F. Hasler, Oct 07 2014

A020664 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 81, 82, 83, 84, 85, 88, 89, 96, 97
Offset: 1

Views

Author

Keywords

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Maple
    Noap:= proc(N,m)
    # N terms of earliest increasing seq with no m-term arithmetic progression
    local A,forbid,n,c,ds,j;
    A:= Vector(N):
    A[1..m-1]:= <($1..m-1)>:
    forbid:= {m}:
    for n from m to N do
      c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
      A[n]:= c;
      ds:= convert(map(t -> c-t, A[m-2..n-1]),set);
      for j from m-2 to 2 by -1 do
        ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set);
        if ds = {} then break fi;
      od;
      forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
    od:
    convert(A,list)
    end proc:
    Noap(100,10); # Robert Israel, Jan 04 2016

A005838 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 6.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 33, 34, 35, 36, 37, 39, 43, 44, 45, 46, 47, 49, 50, 51, 52, 59, 60, 62, 63, 64, 65, 66, 68, 69, 71, 73, 77, 85, 87, 88, 89, 90, 91, 93, 96, 97, 98, 99, 100, 103, 104, 107, 111, 114, 115, 117, 118, 120
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    A:= Vector(N):
    A[1..5]:= <($1..5)>:
    forbid:= {6}:
    for n from 6 to N do
      c:= min({$A[n-1]+1::max(max(forbid)+1, A[n-1]+1)} minus forbid);
      A[n]:= c;
      ds:= convert(map(t -> c-t, A[4..n-1],set);
      if ds = {} then next fi;
      ds:= ds intersect convert(map(t -> (c-t)/4, A[1..n-4]),set);
      if ds = {} then next fi;
      ds:= ds intersect convert(map(t -> (c-t)/3, A[2..n-3]),set);
      if ds = {} then next fi;
      ds:= ds intersect convert(map(t -> (c-t)/2, A[3..n-2]),set);
      forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
    od:
    convert(A,list); # Robert Israel, Jan 04 2016
  • PARI
    A005838(n,show=1,i=1,o=6,u=0)={for(n=1,n,show&&print1(i,",");u+=1<M. F. Hasler, Jan 03 2016

Formula

a(n) = A020656(n) + 1.

Extensions

Name and links/references edited by M. F. Hasler, Jan 03 2016
Further edited by N. J. A. Sloane, Jan 04 2016

A020655 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 5.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 126, 127, 128, 129, 131, 132, 133
Offset: 1

Views

Author

Keywords

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Maple
    Noap:= proc(N,m)
    # N terms of earliest increasing seq with no m-term arithmetic progression
    local A,forbid,n,c,ds,j;
    A:= Vector(N):
    A[1..m-1]:= <($1..m-1)>:
    forbid:= {m}:
    for n from m to N do
      c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
      A[n]:= c;
      ds:= convert(map(t -> c-t, A[m-2..n-1]),set);
      for j from m-2 to 2 by -1 do
        ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set);
        if ds = {} then break fi;
      od;
      forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
    od:
    convert(A,list)
    end proc:
    Noap(100, 5); # Robert Israel, Jan 04 2016
  • Mathematica
    t = {1, 2, 3, 4}; Do[s = Table[Append[i, n], {i, Subsets[t, {4}]}]; If[! MemberQ[Table[Differences[i, 2], {i, s}], {0, 0, 0}], AppendTo[t, n]], {n, 5, 100}]; t (* T. D. Noe, Apr 17 2014 *)

A020656 Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 6.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 32, 33, 34, 35, 36, 38, 42, 43, 44, 45, 46, 48, 49, 50, 51, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 72, 76, 84, 86, 87, 88, 89, 90, 92, 95, 96, 97, 98, 99, 102, 103, 106, 110, 113, 114, 116, 117, 119, 121
Offset: 1

Views

Author

Keywords

Examples

			5 is excluded since (0,1,2,3,4,5) would be a 6-term AP.
10 is excluded since (0,2,4,6,8,10) would be a 6-term AP.
Idem for 15 and 20.
25 is not excluded, but after 25 (1,6,11,16,21,26) would be a 6-AP, and similarly all of 26 through 32 are excluded.
		

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • PARI
    A020656(n,show=1,i=0,o=6,u=0)={for(n=1,n,show&&print1(i,",");u+=1<M. F. Hasler, Jan 03 2016

Formula

a(n) = A005838(n) - 1.

Extensions

Edited by M. F. Hasler, Jan 03 2016
Further edited (with new offset) by N. J. A. Sloane, Jan 04 2016

A020659 Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 99
Offset: 1

Views

Author

Keywords

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

A020660 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 8.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 59, 60, 61, 62, 63, 64, 65, 67, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 81, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96, 97
Offset: 1

Views

Author

Keywords

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Maple
    Noap:= proc(N,m)
    # N terms of earliest increasing seq with no m-term arithmetic progression
    local A,forbid,n,c,ds,j;
    A:= Vector(N):
    A[1..m-1]:= <($1..m-1)>:
    forbid:= {m}:
    for n from m to N do
      c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
      A[n]:= c;
      ds:= convert(map(t -> c-t, A[m-2..n-1]),set);
      for j from m-2 to 2 by -1 do
        ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set);
        if ds = {} then break fi;
      od;
      forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
    od:
    convert(A,list)
    end proc:
    Noap(100, 8); # Robert Israel, Jan 04 2016

A020661 Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 69, 70, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Keywords

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

A020662 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 9.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 53, 55, 56, 57, 58, 59, 60, 64, 65, 66, 67, 68, 69, 70, 71, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 91, 92, 94, 95, 96, 97
Offset: 1

Views

Author

Keywords

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Maple
    Noap:= proc(N,m)
    # N terms of earliest increasing seq with no m-term arithmetic progression
    local A,forbid,n,c,ds,j;
    A:= Vector(N):
    A[1..m-1]:= <($1..m-1)>:
    forbid:= {m}:
    for n from m to N do
      c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
      A[n]:= c;
      ds:= convert(map(t -> c-t, A[m-2..n-1]),set);
      for j from m-2 to 2 by -1 do
        ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set);
        if ds = {} then break fi;
      od;
      forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
    od:
    convert(A,list)
    end proc:
    Noap(100,9); # Robert Israel, Jan 04 2016

A020663 Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 80, 81, 82, 83, 84, 87, 88, 95, 96
Offset: 1

Views

Author

Keywords

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
Previous Showing 11-20 of 73 results. Next