cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A321315 Number of permutations of [n] where the length of the longest increasing subsequence is larger than or equal to the length of the longest decreasing subsequence.

Original entry on oeis.org

1, 1, 5, 14, 78, 488, 3161, 25092, 231428, 2299664, 24809824, 296046900, 3863542365, 54081895706, 806425921874, 12828011279528, 217574673205512, 3914918953508792, 74300528009315864, 1482219340166034896, 31035891175182089248, 681299189806864371412, 15649118660372502746968
Offset: 1

Views

Author

Alois P. Heinz, Nov 03 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
        l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
    f:= l-> `if`(l[1]>=nops(l), h(l)^2, 0):
    g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]),
         g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])):
    a:= n-> g(n$2, []):
    seq(a(n), n=1..23);

Formula

a(n) = Sum_{k=0..n-1} A321316(n,k).
a(n) = A321313(n) + A321314(n).

A064314 Total length of longest increasing runs in all permutations of n elements.

Original entry on oeis.org

1, 3, 12, 55, 299, 1900, 13942, 115932, 1078361, 11092265, 125040100, 1532995992, 20310212672, 289186696338, 4404156016584, 71441907922793, 1229835421590959, 22393298253477006, 430019590699868644, 8685717780508953928, 184088653170341473400, 4085097253151506682170
Offset: 1

Views

Author

David W. Wilson, Sep 07 2001

Keywords

Crossrefs

This sequence treats runs of adjacent elements, A003316 treats subsequences of not necessarily adjacent elements.

Programs

  • Maple
    b:= proc(u, o, t, k) option remember; `if`(t=k, (u+o)!,
          `if`(max(t, u)+o add(b(0, n, 0, k), k=1..n) -n*b(0, n, 0, n+1):
    seq(a(n), n=1..25);  # Alois P. Heinz, Oct 16 2013
  • Mathematica
    nn=30;f[list_]:=Total[Table[list[[i]]*i,{i,1,Length[list]}]];a[r_]:=Apply[Plus,Table[Normal[Series[y x^(r+1)/(1-Sum[y x^i,{i,1,r}]),{x,0,nn}]][[n]]/(n+r)!,{n,1,nn-r}]]/.y->-1;Map[f,Map[Select[#,#>0&]&,Transpose[Prepend[Table[Drop[Range[0,nn]! CoefficientList[Series[1/(1-x-a[n+1])-1/(1-x-a[n]),{x,0,nn}],x],1],{n,1,28}],Table[1,{nn}]]]]] (* Geoffrey Critzer, Feb 25 2014 *)

Formula

a(n) = Sum_{k=1..n} k*A008304(n,k). - Max Alekseyev, May 22 2012

A275576 Sums of lengths of longest (strictly) increasing subsequences of all n^n length-n lists of integers from {1,2,...,n}.

Original entry on oeis.org

1, 5, 45, 524, 7450, 125992, 2472197, 55163096, 1379215566, 38203654070, 1161476316583, 38452206880034, 1376997068182450, 53036098532973584, 2186272797635061105, 96043562430904351024, 4479387734051244791950, 221051522602427094486042
Offset: 1

Views

Author

Jeffrey Shallit, Aug 02 2016

Keywords

Examples

			For n = 2 there are 4 such sequences:  (1,1), (1,2), (2,1), and (2,2).
The corresponding lengths of longest (strictly) increasing subsequences of these is 1, 2, 1, 1, so a(2) = 5.
		

Crossrefs

Cf. A003316, which computes the same thing for permutations.
Cf. A275577, which computes the same thing for not necessarily strictly increasing subsequences.
Cf. A245667.

Formula

a(n) = Sum_{k=1..n} k * A245667(n,k). - Alois P. Heinz, Nov 02 2018

Extensions

a(8)-a(18) from Alois P. Heinz, Nov 02 2018

A275577 Sums of lengths of longest (not necessarily strictly) increasing subsequences of all n^n length-n lists of integers from {1,2,...,n}.

Original entry on oeis.org

1, 7, 63, 716, 10050, 167707, 3246985, 71601112, 1772086842, 48644809445, 1466863148619, 48202848917302, 1714563272612502
Offset: 1

Views

Author

Jeffrey Shallit, Aug 02 2016

Keywords

Examples

			For n = 2 there are 4 such sequences:  (1,1), (1,2), (2,1), and (2,2).
The corresponding lengths of longest (not necessarily strictly) increasing subsequences of these is 2, 2, 1, 2, so a(2) =7.
		

Crossrefs

Cf. A003316, which computes the same thing for permutations.
Cf. A275576, which computes the same thing for strictly increasing subsequences.

Extensions

a(8)-a(13) from Alois P. Heinz, Nov 02 2018
Previous Showing 11-14 of 14 results.