cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A004802 Numbers that are the sum of 2 nonzero 10th powers.

Original entry on oeis.org

2, 1025, 2048, 59050, 60073, 118098, 1048577, 1049600, 1107625, 2097152, 9765626, 9766649, 9824674, 10814201, 19531250, 60466177, 60467200, 60525225, 61514752, 70231801, 120932352, 282475250, 282476273, 282534298, 283523825, 292240874
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1103972715709403850 is in the sequence as 1103972715709403850 = 51^10 + 63^10.
2059617246125773226 is in the sequence as 2059617246125773226 = 61^10 + 65^10.
27850192968371852849 is in the sequence as 27850192968371852849 = 25^10 + 88^10. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A003338 Numbers that are the sum of 4 nonzero 4th powers.

Original entry on oeis.org

4, 19, 34, 49, 64, 84, 99, 114, 129, 164, 179, 194, 244, 259, 274, 289, 304, 324, 339, 354, 369, 419, 434, 499, 514, 529, 544, 594, 609, 628, 643, 658, 673, 674, 708, 723, 738, 769, 784, 788, 803, 849, 868, 883, 898, 913, 963, 978, 1024, 1043, 1138, 1153, 1218
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
53667 is in the sequence as 53667 = 2^4 + 5^4 + 7^4 + 15^4.
81427 is in the sequence as 81427 = 5^4 + 5^4 + 11^4 + 16^4.
106307 is in the sequence as 106307 = 3^4 + 5^4 + 5^4 + 18^4. (End)
		

Crossrefs

Cf. A047715, A309763 (more than 1 way), A344189 (exactly 2 ways), A176197 (distinct nonzero powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Maple
    # returns number of ways of writing n as a^4+b^4+c^4+d^4, 1<=a<=b<=c<=d.
    A003338 := proc(n)
        local a,i,j,k,l,res ;
        a := 0 ;
        for i from 1 do
            if i^4 > n then
                break ;
            end if;
            for j from i do
                if i^4+j^4 > n then
                    break ;
                end if;
                for k from j do
                    if i^4+j^4+k^4> n then
                        break;
                    end if;
                    res := n-i^4-j^4-k^4 ;
                    if issqr(res) then
                        res := sqrt(res) ;
                        if issqr(res) then
                            l := sqrt(res) ;
                            if l >= k then
                                a := a+1 ;
                            end if;
                        end if;
                    end if;
                end do:
            end do:
        end do:
        a ;
    end proc:
    for n from 1 do
        if A003338(n) > 0 then
            print(n) ;
        end if;
    end do: # R. J. Mathar, May 17 2023
  • Mathematica
    f[maxno_]:=Module[{nn=Floor[Power[maxno-3, 1/4]],seq}, seq=Union[Total/@(Tuples[Range[nn],{4}]^4)]; Select[seq,#<=maxno&]]
    f[1000] (* Harvey P. Dale, Feb 27 2011 *)
  • Python
    limit = 1218
    from functools import lru_cache
    qd = [k**4 for k in range(1, int(limit**.25)+2) if k**4 + 3 <= limit]
    qds = set(qd)
    @lru_cache(maxsize=None)
    def findsums(n, m):
      if m == 1: return {(n, )} if n in qds else set()
      return set(tuple(sorted(t+(q,))) for q in qds for t in findsums(n-q, m-1))
    print([n for n in range(4, limit+1) if len(findsums(n, 4)) >= 1]) # Michael S. Branicky, Apr 19 2021

A003342 Numbers that are the sum of 8 positive 4th powers.

Original entry on oeis.org

8, 23, 38, 53, 68, 83, 88, 98, 103, 113, 118, 128, 133, 148, 163, 168, 178, 183, 193, 198, 213, 228, 243, 248, 258, 263, 278, 293, 308, 323, 328, 338, 343, 353, 358, 368, 373, 388, 403, 408, 418, 423, 433, 438, 453, 468, 483, 488, 498, 503, 518, 533, 548, 563, 568
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 04 2020: (Start)
5396 is in the sequence as 5396 = 1^4 + 1^4 + 4^4 + 5^4 + 5^4 + 6^4 + 6^4 + 6^4.
8789 is in the sequence as 8789 = 5^4 + 5^4 + 5^4 + 5^4 + 6^4 + 6^4 + 6^4 + 7^4.
12469 is in the sequence as 12469 = 1^4 + 3^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 10^4. (End)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], AnyTrue[PowersRepresentations[#, 8, 4], First[#]>0&]&] (* Jean-François Alcover, Jul 18 2017 *)
  • Python
    from itertools import combinations_with_replacement as mc
    from sympy import integer_nthroot
    def iroot4(n): return integer_nthroot(n, 4)[0]
    def aupto(lim):
        pows4 = set(i**4 for i in range(1, iroot4(lim)+1) if i**4 <= lim)
        return sorted(t for t in set(sum(c) for c in mc(pows4, 8)) if t <= lim)
    print(aupto(568)) # Michael S. Branicky, Aug 23 2021

A003330 Numbers that are the sum of 7 positive cubes.

Original entry on oeis.org

7, 14, 21, 28, 33, 35, 40, 42, 47, 49, 54, 56, 59, 61, 66, 68, 70, 73, 75, 77, 80, 84, 85, 87, 91, 92, 94, 96, 98, 99, 103, 105, 106, 110, 111, 112, 113, 117, 118, 122, 124, 125, 129, 131, 132, 133, 136, 137, 138, 140, 143, 144, 145, 147, 148, 150, 151, 152, 154
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020
2408 is the largest among only 208 positive integers not in this sequence: cf. formula. - M. F. Hasler, Aug 23 2020

Examples

			From _M. F. Hasler_, Aug 23 2020: (Start)
The first few terms are multiples of 7 because of the coincidence that 2^3 - 1^3 = 7, equal to the number of cubes we consider here:
7 = 1^3 * 7 is the smallest sum of seven positive cubes.
14 = 1^3 * 6 + 2^3 = 6 + 8 is the next larger sum of seven positive cubes.
21 = 1^3 * 5 + 2^3 * 2 = 5 + 16 is the next larger sum of seven positive cubes.
28 = 1^3 * 4 + 2^3 * 3 = 4 + 24 is the next larger sum of seven positive cubes.
There are three more terms of this form, but the next larger sum of seven positive cubes is a(5) = 3^3 + 6 * 1^3 = 33. (End)
From _David A. Corneth_, Aug 01 2020: (Start)
2070 is in the sequence as 2070 = 4^3 + 4^3 + 4^3 + 5^3 + 8^3 + 8^3 +  9^3.
2383 is in the sequence as 2383 = 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 7^3 + 11^3.
3592 is in the sequence as 3592 = 4^3 + 5^3 + 6^3 + 9^3 + 9^3 + 9^3 + 10^3. (End)
		

Crossrefs

Other sequences of numbers that are the sum of x nonzero y-th powers:
A000404 (x=2, y=2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),
A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),
A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),
A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),
A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),
A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).

Programs

  • PARI
    (A003330_upto(N, k=7, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(160) \\ M. F. Hasler, Aug 02 2020

Formula

a(n) = n + 208 for all n > 2200. - M. F. Hasler, Aug 23 2020

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A003356 Numbers that are the sum of 11 positive 5th powers.

Original entry on oeis.org

11, 42, 73, 104, 135, 166, 197, 228, 253, 259, 284, 290, 315, 321, 346, 352, 377, 408, 439, 470, 495, 501, 526, 532, 557, 563, 588, 619, 650, 681, 712, 737, 743, 768, 774, 799, 830, 861, 892, 923, 954, 979, 985, 1010, 1034, 1041, 1065, 1072, 1096, 1103, 1127, 1134
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
16989 is in the sequence as 16989 = 1^5 + 2^5 + 2^5 + 2^5 + 3^5 + 4^5 + 5^5 + 5^5 + 5^5 + 5^5 + 5^5.
22564 is in the sequence as 22564 = 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5 + 4^5 + 4^5 + 5^5 + 7^5.
30191 is in the sequence as 30191 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 6^5 + 7^5. (End)
		

Crossrefs

Cf. A000584 (fifth powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Incorrect program removed by David A. Corneth, Aug 01 2020

A003359 Numbers that are the sum of 3 nonzero 6th powers.

Original entry on oeis.org

3, 66, 129, 192, 731, 794, 857, 1459, 1522, 2187, 4098, 4161, 4224, 4826, 4889, 5554, 8193, 8256, 8921, 12288, 15627, 15690, 15753, 16355, 16418, 17083, 19722, 19785, 20450, 23817, 31251, 31314, 31979, 35346, 46658, 46721, 46784, 46875, 47386, 47449
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
149781746 is in the sequence as 149781746 = 5^6 + 20^6 + 21^6.
244687691 is in the sequence as 244687691 = 5^6 + 9^6 + 25^6.
617835648 is in the sequence as 617835648 = 4^6 + 26^6 + 26^6. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A004822 Numbers that are the sum of 11 positive 11th powers.

Original entry on oeis.org

11, 2058, 4105, 6152, 8199, 10246, 12293, 14340, 16387, 18434, 20481, 22528, 177157, 179204, 181251, 183298, 185345, 187392, 189439, 191486, 193533, 195580, 197627, 354303, 356350, 358397, 360444, 362491, 364538, 366585, 368632, 370679, 372726, 531449, 533496, 535543
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
460807606 is in the sequence as 460807606 = 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 3^11 + 3^11 + 5^11 + 5^11 + 6^11.
795925198 is in the sequence as 795925198 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 4^11 + 4^11 + 5^11 + 6^11 + 6^11.
1504395992 is in the sequence as 1504395992 = 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 4^11 + 5^11 + 6^11 + 6^11 + 6^11 + 6^11. (End)
		

Crossrefs

Cf. A008455.
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Mathematica
    M = 6347807907; m = M^(1/11) // Ceiling; Reap[
    For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
    For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
    For[g = f, g <= m, g++, For[h = g, h <= m, h++, For[i = h, i <= m, i++,
    For[j = i, j <= m, j++, For[k = j, k <= m, k++,
    s = a^11+b^11+c^11+d^11+e^11+f^11+g^11+h^11+i^11+j^11+k^11;
    If[s <= M, Sow[s]]]]]]]]]]]]]][[2, 1]] // Union (* Jean-François Alcover, Dec 01 2020 *)

A003364 Numbers that are the sum of 8 positive 6th powers.

Original entry on oeis.org

8, 71, 134, 197, 260, 323, 386, 449, 512, 736, 799, 862, 925, 988, 1051, 1114, 1177, 1464, 1527, 1590, 1653, 1716, 1779, 1842, 2192, 2255, 2318, 2381, 2444, 2507, 2920, 2983, 3046, 3109, 3172, 3648, 3711, 3774, 3837, 4103, 4166, 4229, 4292, 4355, 4376, 4418, 4439, 4481
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
167223 is in the sequence as 167223 = 1^6 + 1^6 + 3^6 + 3^6 + 3^6 + 3^6 + 6^6 + 7^6.
290366 is in the sequence as 290366 = 1^6 + 4^6 + 4^6 + 5^6 + 5^6 + 5^6 + 7^6 + 7^6.
443086 is in the sequence as 443086 = 2^6 + 3^6 + 5^6 + 5^6 + 5^6 + 5^6 + 7^6 + 8^6. (End)
		

Crossrefs

Cf. A001014 (sixth powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A003371 Numbers that are the sum of 4 positive 7th powers.

Original entry on oeis.org

4, 131, 258, 385, 512, 2190, 2317, 2444, 2571, 4376, 4503, 4630, 6562, 6689, 8748, 16387, 16514, 16641, 16768, 18573, 18700, 18827, 20759, 20886, 22945, 32770, 32897, 33024, 34956, 35083, 37142, 49153, 49280, 51339, 65536, 78128, 78255, 78382, 78509
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			16768 is in the sequence as 16768 = 2^7 + 2^7 + 2^7 + 4^7;
18700 is in the sequence as 18700 = 1^7 + 2^7 + 3^7 + 4^7;
65536 is in the sequence as 65536 = 4^7 + 4^7 + 4^7 + 4^7.
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Incorrect program removed by David A. Corneth, Aug 01 2020

A003373 Numbers that are the sum of 6 positive 7th powers.

Original entry on oeis.org

6, 133, 260, 387, 514, 641, 768, 2192, 2319, 2446, 2573, 2700, 2827, 4378, 4505, 4632, 4759, 4886, 6564, 6691, 6818, 6945, 8750, 8877, 9004, 10936, 11063, 13122, 16389, 16516, 16643, 16770, 16897, 17024, 18575, 18702, 18829, 18956, 19083, 20761, 20888
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
3077074 is in the sequence as 3077074 = 1^7 + 2^7 + 5^7 + 5^7 + 7^7 + 8^7.
7160441 is in the sequence as 7160441 = 2^7 + 2^7 + 2^7 + 6^7 + 8^7 + 9^7.
12921079 is in the sequence as 12921079 = 2^7 + 2^7 + 2^7 + 7^7 + 8^7 + 10^7. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020
Previous Showing 11-20 of 36 results. Next