cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 51 results. Next

A123299 Prime sums of 13 positive 5th powers.

Original entry on oeis.org

13, 137, 199, 317, 379, 503, 683, 739, 863, 1049, 1129, 1223, 1229, 1409, 1433, 1471, 1613, 1619, 1831, 1949, 1979, 2011, 2221, 2339, 2543, 2549, 2729, 2791, 2909, 2917, 2971, 3089, 3137, 3299, 3307, 3323, 3331, 3361, 3511, 3541, 3659, 3863, 3877, 3931, 4049
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Examples

			a(1) = 13 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 137 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 199 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 317 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 4100; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 13}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 12 2016 *)

Formula

A000040 INTERSECTION A123299.

Extensions

a(10)-a(45) from Giovanni Resta, Jun 12 2016

A123300 Prime sums of 14 positive 5th powers.

Original entry on oeis.org

107, 293, 349, 653, 659, 839, 1013, 1019, 1223, 1279, 1409, 1559, 1583, 1621, 1801, 1831, 1949, 2011, 2129, 2153, 2309, 2333, 2339, 2347, 2371, 2551, 2699, 2707, 2731, 2879, 2917, 3083, 3121, 3169, 3191, 3301, 3331, 3449, 3457, 3511, 3541, 3659, 3691, 3761, 3847, 4019, 4027, 4051
Offset: 1

Views

Author

Jonathan Vos Post, Sep 25 2006

Keywords

Examples

			a(1) = 107 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5.
a(2) = 293 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 349 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(4) = 653 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 5000; q = Range[up^(1/5)]^5; a={0}; Do[b = Select[Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 14}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 12 2016 *)

Formula

A000040 INTERSECTION A123295.

Extensions

More terms from Harvey P. Dale, Jan 01 2015
4 missing terms from Giovanni Resta, Jun 12 2016

A123034 Prime sums of 5 positive 5th powers.

Original entry on oeis.org

5, 67, 1301, 1543, 2113, 2293, 2777, 3191, 3253, 3347, 3371, 3433, 3613, 4339, 5237, 5417, 5659, 6229, 6737, 7307, 7549, 7873, 8053, 8537, 8803, 9377, 9439, 9619, 9857, 10099, 11177, 11423, 11927, 12743, 15797, 15859, 16811, 17053, 17183, 18679, 18919, 19163
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either 5 odd terms (as with 5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 and 16811 = 1^5 + 1^5 + 1^5 + 1^5 + 7^5), two even and 3 odd terms (as with 67 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 and 1301 = 1^5 + 1^5 + 2^5 + 3^5 + 4^5) or four even terms and one odd term (as with 3253 = 2^5 + 2^5 + 2^5 + 2^5 + 5^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 67 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5.
a(3) = 1301 = 1^5 + 1^5 + 2^5 + 3^5 + 4^5.
a(4) = 1543 = 1^5 + 2^5 + 3^5 + 3^5 + 4^5.
a(5) = 2113 = 1^5 + 2^5 + 2^5 + 4^5 + 4^5.
a(6) = 3191 = 1^5 + 1^5 + 2^5 + 2^5 + 5^5.
a(7) = 4339 = 3^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Mathematica
    Take[Select[Union[Total/@Tuples[Range[10]^5,5]],PrimeQ],60] (* Harvey P. Dale, Jul 21 2014 *)

Formula

A000040 INTERSECTION A003350.

Extensions

Corrected and extended by Harvey P. Dale, Jul 21 2014

A123035 Prime sums of 6 positive 5th powers.

Original entry on oeis.org

37, 521, 1091, 1153, 1997, 2083, 2239, 3137, 3559, 4129, 4153, 4457, 4637, 5449, 6199, 7253, 8147, 8573, 9319, 9323, 10069, 10463, 11959, 14029, 15083, 15649, 16649, 16843, 16883, 17327, 17389, 17569, 17959, 18077, 18773, 18803, 19373, 20029
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either one even and 5 odd terms (as with 37 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 and 521 = 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5), three even and 3 odd terms (as with 1091 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 4^5) or five even terms and one odd term (as with 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 4^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 37 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5.
a(2) = 521 = 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5.
a(3) = 1091 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 4^5.
a(4) = 1153 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 4^5.
		

Crossrefs

Programs

  • Mathematica
    up = 10^6; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@Table[e + a, {e, q}], # <= up &]; a = b, {k, 6}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 13 2016 *)

Formula

A000040 INTERSECTION A003351.

Extensions

More terms from Max Alekseyev, Sep 24 2011

A123036 Prime sums of 7 positive 5th powers.

Original entry on oeis.org

7, 131, 193, 311, 373, 491, 733, 857, 1061, 1123, 1217, 1279, 1303, 1427, 1459, 1607, 1787, 2029, 2053, 2357, 3169, 3373, 3677, 3739, 3833, 3919, 4099, 4583, 5153, 5419, 5903, 6317, 6379, 6473, 7043, 7309, 7793, 7937, 8117, 8179, 8297, 8363, 8539, 8543, 8867
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either seven odd (as with 7 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5), two even and 5 odd terms (as with 311 = 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5), four even and 3 odd terms (as with 131 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 and 373 = 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5) or six even terms and one odd term (as with 193 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 7 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 131 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 193 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 311 = 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5.
a(5) = 373 = 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    Take[Union[Select[Total/@Tuples[Range[8]^5,7],PrimeQ]],50] (* Harvey P. Dale, May 08 2012 *)

Formula

A000040 INTERSECTION A003352.

Extensions

More terms from Harvey P. Dale, May 08 2012

A123037 Prime sums of 8 positive 5th powers.

Original entry on oeis.org

101, 163, 281, 467, 523, 647, 827, 1031, 1069, 1093, 1217, 1249, 1459, 1733, 1999, 2389, 3163, 3319, 3467, 3529, 3623, 3709, 3803, 3889, 4217, 4373, 4397, 4639, 4943, 5209, 5333, 5693, 5849, 6263, 6287, 6529, 6653, 6833, 7013, 7411, 7583, 7907, 8087, 8329
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either one even and seven odd (as with 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 and 523 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5), three even and 5 odd terms (as with 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5), five even and 3 odd terms (as with 647 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5) or seven even terms and one odd term (as with 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 101 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5.
a(2) = 163 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 281 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5.
a(4) = 467 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(5) = 523 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5.
a(6) = 647 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 10^4; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 8}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 13 2016 *)

Formula

A000040 INTERSECTION A003353.

Extensions

More terms from Alois P. Heinz, Aug 12 2015

A123038 Prime sums of 9 positive 5th powers.

Original entry on oeis.org

71, 251, 257, 313, 499, 617, 797, 859, 977, 1039, 1063, 1187, 1249, 1367, 1429, 1523, 1609, 1789, 1913, 2179, 2273, 2297, 2539, 2663, 2843, 3023, 3109, 3257, 3319, 3413, 3499, 3593, 3617, 3803, 4373, 4733, 4889, 5179, 5303, 5483, 5639, 5881, 6257, 6389, 6451
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either nine odd (as with 251 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 and 977 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5), two even and seven odd (as with 71 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 and 313 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5), four even and 5 odd terms (as with xxxx), six even and 3 odd terms (as with 3803 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5 + 5^5) or eight even terms and one odd term (as with 257 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 and 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 71 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5.
a(2) = 251 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5.
a(3) = 257 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 313 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5.
a(5) = 499 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5
a(9) = 977 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 10^4; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 9}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 13 2016 *)

Formula

A000040 INTERSECTION A003354.

Extensions

More terms from Alois P. Heinz, Aug 12 2015

A123039 Prime sums of 11 positive 5th powers.

Original entry on oeis.org

11, 73, 197, 439, 557, 563, 619, 743, 1103, 1283, 1307, 1493, 1549, 2243, 2251, 2399, 2423, 2579, 2969, 3001, 3259, 3329, 3391, 3539, 3571, 3719, 3923, 4079, 4289, 4493, 4649, 4673, 5039, 5281, 5399, 5641, 5851, 6211, 6359, 6367, 6421, 6563, 6719, 6781, 6961
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either eleven odd (as with 11 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5), two even and nine odd (as with 73 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 and 557 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5 + 3^5), four even and seven odd (as with 619 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5), six even and 5 odd terms (as with 197 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 and 439 = 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5), eight even and 3 odd terms (as with 743 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5) or ten even terms and one odd term (as with 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 11 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 73 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5.
a(3) = 197 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 439 = 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(5) = 557 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5 + 3^5.
a(6) = 563 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(7) = 619 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
a(8) = 743 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 6961; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 11}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 12 2016 *)

Formula

A000040 INTERSECTION A003356.

Extensions

More terms from Alois P. Heinz, Aug 12 2015

A123040 Prime sums of 12 positive 5th powers.

Original entry on oeis.org

43, 167, 229, 347, 353, 409, 769, 1097, 1277, 1283, 1439, 1619, 1823, 1861, 1979, 2003, 2089, 2213, 2221, 2393, 2549, 2579, 2729, 2791, 2939, 2971, 3001, 3119, 3167, 3181, 3229, 3299, 3323, 3329, 3361, 3533, 3541, 3571, 3697, 3931, 4049, 4079, 4111, 4159, 4259
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584}. There must be an odd number of odd terms in the sum, either one even and eleven odd (as with 11 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 and 769 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 3^5), three even and nine odd (as with 347 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5), five even and seven odd (as with 167 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 and 409 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5), seven even and 5 odd terms (as with 229 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5), nine even and 3 odd terms (as with 161341 = 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 11^5) or eleven even terms and one odd term (as with 353 = 1^ 5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 43 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5.
a(2) = 167 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 229 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 347 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(5) = 353 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(6) = 409 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(7) = 769 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    B:= {seq(i^5,i=1..floor(N^(1/5)))}:
    B2:= select(`<=`,{seq(seq(b+c,b=B),c=B)},N):
    B4:= select(`<=`,{seq(seq(b+c,b=B2),c=B2)},N):
    B8:= select(`<=`,{seq(seq(b+c,b=B4),c=B4)},N):
    B12:= select(`<=`,{seq(seq(b+c,b=B4),c=B8)},N):
    sort(select(isprime,convert(B12,list))); # Robert Israel, Aug 10 2015

Formula

A000040 INTERSECTION A003357.

Extensions

More terms from Matthew House, Aug 10 2015

A123043 Prime sums of 10 positive 5th powers.

Original entry on oeis.org

41, 103, 227, 283, 587, 829, 953, 1009, 1033, 1399, 1493, 1523, 1579, 1759, 2063, 2087, 2243, 2273, 2633, 2789, 2969, 3079, 3203, 3359, 3407, 3413, 3469, 3539, 3593, 3929, 4133, 4157, 4219, 4289, 4523, 4679, 4703, 5101, 5273, 5851, 6203, 6389, 6421, 6569, 6991
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either one even and nine odd (as with 41 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 and 283 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5), three even and seven odd (as with 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 and 587 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5), five even and 5 odd terms (as with 17939 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 7^5), seven even and 3 odd terms (as with 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5) or nine even terms and one odd term (as with 3413 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 5^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 41 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5.
a(2) = 103 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5.
a(3) = 227 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 283 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5.
a(5) = 587 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 10^4; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 10}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 13 2016 *)

Formula

A000040 INTERSECTION A003355.

Extensions

More terms from Alois P. Heinz, Aug 12 2015
Previous Showing 41-50 of 51 results. Next