cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 345 results. Next

A348039 a(n) = gcd(A003557(n), A327564(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2021

Keywords

Comments

There is interesting regularity in the scatter plot.

Crossrefs

Cf. A347960 (positions of terms > 1).

Programs

  • Mathematica
    {1}~Join~Array[GCD @@ Map[Times @@ # &, Transpose@ Map[{#1^(#2 - 1), (#1 + 1)^(#2 - 1)} & @@ # &, FactorInteger[#]]] &, 105, 2] (* Michael De Vlieger, Oct 20 2021 *)
  • PARI
    A003968(n) = {my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
    A007947(n) = factorback(factorint(n)[, 1]);
    A348036(n) = gcd(n, A003968(n));
    A348039(n) = (A348036(n)/A007947(n));
    
  • PARI
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A327564(n) = { my(f=factor(n)); for(k=1, #f~, f[k, 1]++; f[k, 2]--); factorback(f); }; \\ From A327564
    A348039(n) = gcd(A003557(n), A327564(n));

Formula

a(n) = gcd(A003557(n), A327564(n)).
a(n) = A348036(n) / A007947(n).
a(n) = A003557(n) / A348037(n).
a(n) = A327564(n) / A348038(n).

A348496 a(n) = gcd(A018804(n), A347130(n)) / A003557(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 4, 1, 3, 1, 2, 1, 21, 1, 36, 5, 1, 1, 1, 1, 15, 3, 4, 1, 1, 1, 1, 7, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 12, 3, 5, 1, 10, 1, 3, 5, 4, 1, 9, 1, 1, 1, 1, 1, 12, 1, 3, 1, 1, 9, 1, 1, 12, 1, 1, 1, 1, 1, 3, 1, 4, 3, 1, 1, 2, 1, 1, 1, 4, 11, 15, 1, 35, 1, 3, 5, 36, 1, 1, 3, 1, 1, 3, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[Total@ GCD[n, Range[n]], DivisorSum[n, #*(If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &[n/#]) &]]/Apply[Times, Map[#1^(#2 - 1) & @@ # &, FactorInteger[n]]], {n, 101}] (* Michael De Vlieger, Oct 21 2021 *)
  • PARI
    \\ Needs also code from A348495:
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A348496(n) = (A348495(n)/A003557(n));

Formula

a(n) = A348495(n) / A003557(n).
a(n) = gcd(A347128(n), A347129(n)).

A349619 Dirichlet convolution of A003415 with the Dirichlet inverse of A003557.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 7, 5, 5, 1, 7, 1, 7, 6, 15, 1, 9, 1, 13, 8, 11, 1, 15, 9, 13, 19, 19, 1, 14, 1, 31, 12, 17, 10, 17, 1, 19, 14, 29, 1, 20, 1, 31, 24, 23, 1, 31, 13, 25, 18, 37, 1, 27, 14, 43, 20, 29, 1, 30, 1, 31, 34, 63, 16, 32, 1, 49, 24, 34, 1, 33, 1, 37, 34, 55, 16, 38, 1, 61, 65, 41, 1, 44, 20, 43, 30, 71
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := e/p; d[1] = 0; d[n_] := n*Plus @@ f1 @@@ FactorInteger[n]; f[p_, e_] := -(p - 1)^(e - 1); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, s[#]*d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A349340(n) = { my(f=factor(n)); prod(i=1, #f~, -((f[i,1]-1)^(f[i,2]-1))); };
    A349619(n) = sumdiv(n,d,A003415(n/d)*A349340(d));

Formula

a(n) = Sum_{d|n} A003415(n/d) * A349340(d).

A351944 a(n) = A003557(A181819(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 3, 1, 4, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 02 2022

Keywords

Crossrefs

Programs

Formula

a(n) = A181819(n) / A329601(n) = A003557(A181819(n)).

A369008 a(n) = A085731(n) / A003557(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2024

Keywords

Crossrefs

Cf. A342090 (positions of terms > 1).

Programs

  • Mathematica
    f[p_, e_] := If[Divisible[e, p], p, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 20 2024 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A369008(n) = { my(u=A003415(n)); (gcd(n,u)/A003557(n)); };
    
  • PARI
    A369008(n) = if(1==n, n, my(f=factor(n)); for(i=1, #f~, if((f[i, 2]%f[i, 1]), f[i, 1] = 1, f[i, 2] = 1)); factorback(f));

Formula

Multiplicative with a(p^e) = p if p|e, otherwise a(p^e) = 1.
For n > 1, a(n) = A342001(n) / A083345(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((p^(p+1) + p^2 - 3*p +1)/(p*(p^p-1))) = 1.22775972725472961826... . - Amiram Eldar, Jan 20 2024

A255425 a(n) = A003557(A255334(n)) = A255334(n) / A255424(n).

Original entry on oeis.org

36, 36, 36, 36, 36, 36, 36, 180, 36, 576, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 396, 900, 36, 36, 36, 36, 36, 36, 576, 36, 36, 36, 36, 36, 36, 468, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 576, 36, 36
Offset: 1

Views

Author

Antti Karttunen, Apr 06 2015

Keywords

Crossrefs

Formula

a(n) = A003557(A255334(n)) = A255334(n) / A255424(n).
For all n, a(n) > 1 and a(n) < A255426(n).

A255426 a(n) = A003557(A255423(n)) = A255423(n) / A255424(n).

Original entry on oeis.org

49, 49, 49, 49, 49, 49, 49, 245, 49, 676, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 539, 1225, 49, 49, 49, 49, 49, 49, 676, 49, 49, 49, 49, 49, 49, 637, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 676, 49, 49
Offset: 1

Views

Author

Antti Karttunen, Apr 06 2015

Keywords

Crossrefs

Formula

a(n) = A003557(A255423(n)) = A255423(n) / A255424(n).
For all n, a(n) > A255425(n) > 1.

A319698 Filter sequence combining A003557(n) [n divided by largest squarefree divisor of n] with A319697(n) [sum of even squarefree divisors of n].

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 6, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 15, 16, 17, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 6, 19, 1, 27, 28, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 25, 6, 35, 1, 36, 1, 37, 1, 36, 1, 38, 1, 39, 15, 40, 1, 41, 1, 42, 43, 44, 1, 45, 1, 46, 1, 47, 1, 48, 1, 34, 1, 36, 1, 49, 1, 50, 6, 51, 1, 52, 1, 53, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2018

Keywords

Comments

Restricted growth sequence transform of ordered pair [A003557(n), A319697(n)].

Crossrefs

Cf also A291750, A291751.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A319697(n) = sumdiv(n, d, (!(d%2))*issquarefree(d)*d);
    v319698 = rgs_transform(vector(up_to,n,[A003557(n),A319697(n)]));
    A319698(n) = v319698[n];

A322318 a(n) = gcd(A003557(n), A048250(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 3, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, GCD[ Times@@ (First[#] ^(Last[#]-1)& /@  f), Times@@((#+1)& @@@ f)]]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
    A322318(n) = gcd(A048250(n), A003557(n));

Formula

a(n) = gcd(A003557(n), A048250(n)).
a(n) = A001615(n) / A322319(n).

A322351 a(n) = min(A003557(n), A173557(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 4, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 2, 6, 4, 1, 2, 1, 2, 1, 4, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 1, 6, 3, 4, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, Min[ Times@@ (First[#]^(Last[#]-1)& /@  f), Times@@((#-1)& @@@ f)]]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A322351(n) = min(A003557(n), A173557(n));

Formula

a(n) = min(A003557(n), A173557(n)).
a(n) = A000010(n) / A322352(n).
Previous Showing 31-40 of 345 results. Next